K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
3 tháng 1 2016
Ta có:
x-y+5k=0 => y = x + 5k (1)
(2k - 3)x + k(y - 1) = 0 (2)
(k + 1)x - y + 1 = 0 => y = (k + 1)x + 1 (3)
Phương trình hoành độ giao điểm của (1) và (3) :
x + 5k = (k + 1)x + 1
<=> kx + 1 = 5k <=> x = (5k - 1)/k (k # 0)
Khi đó y = (5k - 1)/k + 5k = (5k^2 + 5k - 1)/k
Thay x = (5k - 1)/k và y = (5k^2 + 5k - 1)/k vào (2) :
(2k - 3).(5k - 1)/k + k.[(5k^2 + 5k - 1)/k - 1] = 0
<=> (2k - 3)(5k - 1)/k + k.(5k^2 + 4k - 1)/k = 0
<=> 10k^2 - 17k + 3 + 5k^3 + 4k^2 - k = 0
<=> 5k^3 + 14k^2 - 17k + 3 = 0
=> k = 0,2
TN
0
B
1 tháng 1 2016
tik mik nha mik tik lại
câu hỏi này mik chưa học đến vì mik mới học lớp 6 thui
NM
0
\(x-y+5k=0\)
\(\Leftrightarrow y=x+5k\)
\(\left(k+1\right)x-y+1=0\)
\(\Leftrightarrow y=\left(k+1\right)x+1\)
Vì 3 đường thẳng đồng quy gọi đó là A(x0;y0) nên ta có:
\(x+5k=\left(k+1\right)x+1\)
\(\Leftrightarrow5k-1=kx\)
\(\Leftrightarrow x=\frac{5k-1}{k}\)\(\Rightarrow y=\frac{5k-1+25k^2}{k}\)
\(\left(2k+3\right)x+k\left(y-1\right)=0\)
\(\Leftrightarrow-\frac{\left(2k+3\right)x}{k}+1=y\)
Thay \(\Leftrightarrow x=\frac{5k-1}{k}\)ta có:
...(Đến đây thay vô để tìm k).