Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)
\(2^x.2^2.3^x.3.5^x=10800\)
\(\Rightarrow\left(2.3.5\right)^x.12=10800\)
\(\Rightarrow30^x=\frac{10800}{12}=900\)
\(\Rightarrow30^x=30^2\)
\(\Rightarrow x=2\)
b,\(3^{x+2}-3^x=24\)
\(\Rightarrow3^x\left(3^2-1\right)=24\)
\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)
2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Dấu bằng xảy ra khi \(ab\ge0\)
Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)
Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)
Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)
d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)
Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)
Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)
\(\Rightarrow B\le1\)
Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)
\(\Rightarrow x\le2017\)
Vậy \(Max_B=1\) khi \(x\le2017\)
để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)
suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)
Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3
\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))
Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!
a) \(A=11-\left|\frac{2}{3}x+\frac{1}{2}\right|\) . Có: \(\left|\frac{2}{3}x+\frac{1}{2}\right|\ge0\)
\(\Rightarrow11-\left|\frac{2}{3}x+\frac{1}{2}\right|\le11\)
Dấu '=' xảy ra khi: \(\left|\frac{2}{3}x+\frac{1}{2}\right|=0\Rightarrow\frac{2}{3}x=-\frac{1}{2}\Rightarrow x=-\frac{3}{4}\)
Vậy: \(Max_A=11\) tại \(x=-\frac{3}{4}\)
b) \(B=1+\frac{2}{1+\left|2x-1\right|}\) . Có: \(\frac{2}{1+\left|2x-1\right|}\ge0\Rightarrow1+\frac{2}{1+\left|2x-1\right|}\ge1\)
Để B được giá trị lớn nhất thì \(1+\left|2x-1\right|\) đạt giá trị nhỏ nhất
\(1+\left|2x-1\right|\ge1\)
Dấu = xảy ra khi: \(\left|2x-1\right|=0\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)
Vậy: \(Max_B=1+\frac{2}{1}=3\) tại \(x=\frac{1}{2}\)
Với x = \(11-\frac{1}{2}=\frac{21}{2}\)
= \(\frac{21}{2}:\frac{2}{3}=\frac{63}{4}\)
Vậy với \(\frac{63}{4}\)thì đạt giá trị lớn nhất
b) tương tự
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0
\(\Rightarrow4-x=1\rightarrow x=3\)
thay vào ta đc A=3
B3
\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)
Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )
Vậy gtln của 3/4-x là 3 thay vào ta đc b=4
Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)
B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)
VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}
\(\Rightarrow\)x={0;-1;23}
ta có \(\frac{1+5y}{5x}\)=\(\frac{1+7y}{4x}\)
=> 4x(1+5y)=5x(1+7y)
=> 4x+20xy=5x+35xy
=> 4x-5x =35xy-20xy
=> -x =15xy
=> -1 =15y
=> y =\(\frac{-1}{15}\)
có y roi thi có thể dễ dàng tìm được x=-2
Ta có: \(\frac{x+1}{x}=\pm1+\frac{1}{x}\)
Ta thấy: \(\pm1+\frac{1}{x}\) lớn nhất
\(\Leftrightarrow\frac{1}{x}\) lớn nhất
\(\Leftrightarrow\) x nhỏ nhất
\(\Leftrightarrow x=\pm1\)
*Chú ý: Có những chỗ phải viết kí hiệu của giá trị tuyệt đối nhưng mình không viết được. Bạn tự hiểu nhé!
Mong bạn thông cảm và chúc bạn học giỏi!