K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2018

1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)

Dấu "=" xảy ra khi x=y=1

Máy mình bị lỗi nên ko nhìn được các bài tiếp theo

Chúc bạn học tốt :)

18 tháng 9 2018

Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2    

Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

20 tháng 10 2017

\(A=\left|x+\frac{1}{2}\right|-1\)

ta có \(\left|x+\frac{1}{2}\right|\ge0\forall x\in R\)

\(\Rightarrow\left|x+\frac{1}{2}\right|-1\ge-1\forall x\in R\)

\(\Rightarrow A\ge-1\)

\(A=-1\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)

Vậy GTNN của A=-1 tại x=-1/2

20 tháng 10 2017

a) GTTNN là -1 

b) GTLN là -3

c) GTNN là -8

d) đang tìm .... 

8 tháng 9 2019

Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi

a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)

Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)

\(\Leftrightarrow A\ge-1\)

Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1

Vậy Giá trị nhỏ nhất của A là -1

b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1

17 tháng 4 2020

eeeee

7 tháng 12 2016

sau 3 phút có kết quả tuy bạn http://olm.vn/hoi-dap/question/772291.html

18 tháng 7 2017

phần A, B bạn làm như bạn nguyễn quang trung còn C,D làm theo mình:

\(C=\frac{2017}{2018}-\left|x-\frac{3}{5}\right|\)

vì \(\left|x-\frac{3}{5}\right|\ge0\forall x\)

nên \(\frac{2017}{2018}-\left|x-\frac{3}{5}\right|\le\frac{2017}{2018}\forall x\)

vậy \(MaxC=\frac{2017}{2018}\Leftrightarrow x=\frac{3}{5}\)

\(D=\left|x-2\right|+\left|y+1\right|+3\)

\(\left|x-2\right|\ge0;\left|y+1\right|\ge0\forall x\)

nên \(\left|x-2\right|+\left|y+1\right|+3\ge3\forall x\)

vậy \(MinA=3\Leftrightarrow x=2;y=-1\)

18 tháng 7 2017

a ) Ta có : A = \(\left|x+\frac{1}{2}\right|\ge0\forall x\)

Vậy Amin = 0 , khi x = \(-\frac{1}{2}\) 

b) \(B=\left|\frac{3}{7}-x\right|+\frac{1}{9}\)

Mà : \(\left|\frac{3}{7}-x\right|\ge0\forall x\)

Nên : \(B=\left|\frac{3}{7}-x\right|+\frac{1}{9}\ge\frac{1}{9}\forall x\)

Vậy Bmin = \(\frac{1}{9}\) kh x = \(\frac{3}{7}\)