Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có y’=3x2-6x-m
Để đồ thị hàm số đã cho có hai điểm cực trị khi phương trình y’=0 có hai nghiệm phân biệt ⇔ ∆ ' = 9 + 3 m > 0 ⇔ m > - 3
Ta có
đường thẳng đi qua hai điểm cực trị Avà B là
Đường thẳng d; x+4y-5=0 có một VTPT là n d → = ( 1 ; 4 ) .
Đường thẳng có một VTCP là n ∆ → = ( 2 m 3 + 2 ; 1 )
Ycbt suy ra:
Suy ra
thỏa mãn
Chọn A.
Chọn A
Đường thẳng đi qua ĐCĐ, ĐCT là ∆ 1 : 2 x + y = 0 c ó V T P T n 1 ( 2 ; 1 )
Đường thẳng đã cho có ∆ : x + m y + 3 = 0 c ó V T P T n 2 ( 1 ; m )
Yêu cầu bài toán
+ Đường thẳng đi qua 2 điểm cực trị của hàm số là 2x+ y=0 có VTPT n 1 → ( 2 ; 1 )
+ Đường thẳng đã cho x+ my+ 3= 0 có VTPT n 2 → ( 1 ; m )
Yêu cầu bài toán
Chọn A
TXĐ: D = R
\(y'=3x^2-6x=0\) \(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\x=2\Rightarrow y=-3\end{matrix}\right.\)
Suy ra 2 điểm cực trị của đồ thị là: A(0; 1) và B(2; -3)
Ptđt đi qua 2 điểm cực trị:
\(\dfrac{x}{2}=\dfrac{y-1}{-4}\) \(\Rightarrow-2x=y-1\) \(\Leftrightarrow y=-2x+1\left(d'\right)\)
Vì \(d\perp d'\) \(\Rightarrow\left(2m-1\right)\cdot\left(-2\right)=-1\) \(\Leftrightarrow m=\dfrac{3}{4}\)
Chọn B
Chọn C
[Phương pháp tự luận]
Ta có : y = 6 x 2 - 6 ( m + 1 ) x + 6 m
Điều kiện để hàm số có 2 điểm cực trị là m ≠ 1
Hệ số góc đt AB là k = - ( m - 1 ) 2
Đt AB vuông góc với đường thẳng y = x + 2
+ Ta có đạo hàm y’ = 6x2- 6( m+ 1) x+ 6m
Điều kiện để hàm số có 2 điểm cực trị là : m≠ 1
Tọa độ 2 điểm cực trị là A( 1 ; 3m-1) và B ( m ; -m3+ 3m2)
+ Hệ số góc đường thẳng AB là :k= - ( m-1) 2
+ Đường thẳng AB vuông góc với đường thẳng y= x+ 2 khi và chỉ khi k= -1
Hay – ( m-1) 2= -1( vì 2 đường thẳng vuông góc với nhau thì tích hai hệ số góc bằng -1)
Chọn C.
Đầu tiên, ta cần tìm điểm cực trị của hàm số f(x) = x^3 - 3x^2 + m. Điều kiện cần và đủ để x_0 là điểm cực trị của hàm số y = f(x) là f’(x_0) = 0 và f’'(x_0) ≠ 0.
Ta có f’(x) = 3x^2 - 6x và f’'(x) = 6x - 6.
Giải phương trình f’(x) = 0, ta được x_1 = 0 và x_2 = 2. Kiểm tra điều kiện thứ hai, ta thấy f’‘(0) = -6 ≠ 0 và f’'(2) = 6 ≠ 0 nên x_1 = 0 và x_2 = 2 là hai điểm cực trị của hàm số.
Vậy, A = (0, f(0)) = (0, m) và B = (2, f(2)) = (2, 4 - m).
Trọng tâm G của tam giác OAB có tọa độ (x_G, y_G) = (1/3 * (x_A + x_B + x_O), 1/3 * (y_A + y_B + y_O)) = (2/3, 1/3 * (m + 4)).
Để G thuộc đường thẳng 3x + 3y - 8 = 0, ta cần có 3 * (2/3) + 3 * (1/3 * (m + 4)) - 8 = 0. Giải phương trình này, ta được m = 2.
Vậy, đáp án là B. m = 2.
2.
\(y'=3x^2+6\left(m-1\right)x+6m-12\)
Để hàm số có 2 cực trị
\(\Leftrightarrow\Delta'=9\left(m-1\right)^2-3\left(6m-12\right)>0\)
\(\Leftrightarrow9m^2-36m+45>0\) (luôn đúng)
Tiến hành chia y cho y' và lấy phần dư ta được pt đường thẳng AB có dạng:
\(y=\left(2m-6\right)x-2m^2+6m-5\)
AB song song d khi và chỉ khi:
\(\left\{{}\begin{matrix}2m-6=-4\\-2m^2+6m-5\ne1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\-2m^2+6m-6\ne0\end{matrix}\right.\) \(\Rightarrow m=1\)
1.
Đường thẳng d: \(9x-2y+5=0\Leftrightarrow y=\frac{9}{2}x+\frac{5}{2}\)
\(y'=3x^2+4\left(m-1\right)x+m^2-4m+1\)
Để hàm số có 2 cực trị
\(\Leftrightarrow\Delta'=4\left(m-1\right)^2-3m^2+12m-3>0\)
\(\Leftrightarrow m^2+4m+1>0\)
Khi đó, tiến hành chia \(y\) cho \(y'\) và lấy phần dư ta được pt AB có dạng:
\(y=\left(\frac{2}{3}m^2-\frac{32}{9}m+\frac{14}{9}\right)x-2m^2-2-\frac{2}{9}\left(m-1\right)\left(m^2-4m+1\right)\)
Để AB vuông góc d \(\Leftrightarrow\) tích 2 hệ số góc bằng -1
\(\Leftrightarrow\frac{9}{2}\left(\frac{2}{3}m^2-\frac{32}{9}m+\frac{14}{9}\right)=-1\)
\(\Leftrightarrow3m^2-16m+8=0\) \(\Rightarrow\left[{}\begin{matrix}m=\frac{8+2\sqrt{10}}{3}\\m=\frac{8-2\sqrt{10}}{3}\end{matrix}\right.\)
Bạn nên tính toán lại cho chắc
Chọn C
Ta có y ' = 3 x 2 - 6 x + 3 m . Hàm số có hai điểm cực trị <=> y’=0 có hai nghiệm phân biệt
<=> Δ ' = 3 2 - 3 . 3 m > 0 <=> m < 1 (*)
Chia y cho y’ ta được:
Giả sử x 1 , x 2 là hai nghiệm phân biệt của y’=0
Phương trình đường thẳng đi qua hai điểm cực trị có dạng (d) : y= (2m-2)x+1
(d) có vectơ pháp tuyến là n1→ = (2m - 2; -1)
(Δ) : 3x+y-8=0 có vectơ pháp tuyến là n2→(3; 1)
Vì góc giữa đường thẳng (d) và (Δ) là 45o nên
Đối chiếu điều kiện (*) có m = 3 4