K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

Chọn C

Ta có y ' = 3 x 2 - 6 x + 3 m .  Hàm số có hai điểm cực trị <=> y’=0 có hai nghiệm phân biệt

<=> Δ ' = 3 2 - 3 . 3 m > 0  <=> m < 1 (*)

Chia y cho y’ ta được:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Giả sử x 1 ,   x 2  là hai nghiệm phân biệt của y’=0

Phương trình đường thẳng đi qua hai điểm cực trị có dạng (d) : y= (2m-2)x+1

(d) có vectơ pháp tuyến là n1 = (2m - 2; -1)

(Δ) : 3x+y-8=0 có vectơ pháp tuyến là n2(3; 1)

Vì góc giữa đường thẳng (d) và (Δ) là 45o nên

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Đối chiếu điều kiện (*) có  m   =   3 4

24 tháng 2 2019

Ta có y’=3x2-6x-m

Để đồ thị hàm số đã cho có hai điểm cực trị khi  phương trình y’=0  có hai nghiệm phân biệt  ⇔ ∆ ' = 9 + 3 m > 0 ⇔ m > - 3

Ta có 

đường thẳng đi qua hai điểm cực trị  Avà  B là 

Đường thẳng d; x+4y-5=0 có một VTPT là  n d → = ( 1 ; 4 ) .

Đường thẳng  có một VTCP là  n ∆ → = ( 2 m 3 + 2 ;   1 )

Ycbt suy ra:

Suy ra 

thỏa mãn

Chọn A.

8 tháng 9 2018

Chọn A

Đường thẳng đi qua ĐCĐ, ĐCT là ∆ 1 : 2 x + y = 0   c ó   V T P T   n 1 ( 2 ; 1 )

Đường thẳng đã cho có  ∆ : x + m y + 3 = 0   c ó   V T P T   n 2 ( 1 ; m )

Yêu cầu bài toán

17 tháng 6 2019

+ Đường thẳng đi qua 2 điểm cực trị của hàm số  là 2x+ y=0 có VTPT n 1 → ( 2 ; 1 )   

+ Đường thẳng đã cho x+ my+ 3= 0   có VTPT  n 2 → ( 1 ; m )   

Yêu cầu bài toán

Chọn A

21 tháng 3 2023

TXĐ: D = R

\(y'=3x^2-6x=0\) \(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\x=2\Rightarrow y=-3\end{matrix}\right.\)

Suy ra 2 điểm cực trị của đồ thị là: A(0; 1) và B(2; -3)

Ptđt đi qua 2 điểm cực trị:

\(\dfrac{x}{2}=\dfrac{y-1}{-4}\) \(\Rightarrow-2x=y-1\) \(\Leftrightarrow y=-2x+1\left(d'\right)\)

Vì \(d\perp d'\) \(\Rightarrow\left(2m-1\right)\cdot\left(-2\right)=-1\) \(\Leftrightarrow m=\dfrac{3}{4}\)

Chọn B

5 tháng 7 2022

 

.

 

5 tháng 7 2022

undefined

30 tháng 1 2018

Chọn C

[Phương pháp tự luận]

Ta có : y = 6 x 2 - 6 ( m + 1 ) x + 6 m

 

Điều kiện để hàm số có 2 điểm cực trị là m ≠ 1

Hệ số góc đt AB là  k = - ( m - 1 ) 2

Đt AB vuông góc với đường thẳng y = x + 2

31 tháng 12 2019

+ Ta có  đạo hàm y’ = 6x2- 6( m+ 1) x+ 6m

Điều kiện để hàm số có 2 điểm cực trị là : m≠ 1

Tọa độ 2 điểm cực trị là A( 1 ; 3m-1) và B ( m ; -m3+ 3m2)

+ Hệ số góc đường thẳng AB  là :k= - ( m-1) 2

+ Đường thẳng AB vuông góc với đường thẳng y= x+ 2 khi và chỉ khi k= -1

Hay – ( m-1) 2= -1( vì 2 đường thẳng vuông góc với nhau thì tích hai hệ số góc bằng -1) 

Chọn C.

21 tháng 11 2023

Đầu tiên, ta cần tìm điểm cực trị của hàm số f(x) = x^3 - 3x^2 + m. Điều kiện cần và đủ để x_0 là điểm cực trị của hàm số y = f(x) là f’(x_0) = 0 và f’'(x_0) ≠ 0.

Ta có f’(x) = 3x^2 - 6x và f’'(x) = 6x - 6.

Giải phương trình f’(x) = 0, ta được x_1 = 0 và x_2 = 2. Kiểm tra điều kiện thứ hai, ta thấy f’‘(0) = -6 ≠ 0 và f’'(2) = 6 ≠ 0 nên x_1 = 0 và x_2 = 2 là hai điểm cực trị của hàm số.

Vậy, A = (0, f(0)) = (0, m) và B = (2, f(2)) = (2, 4 - m).

Trọng tâm G của tam giác OAB có tọa độ (x_G, y_G) = (1/3 * (x_A + x_B + x_O), 1/3 * (y_A + y_B + y_O)) = (2/3, 1/3 * (m + 4)).

Để G thuộc đường thẳng 3x + 3y - 8 = 0, ta cần có 3 * (2/3) + 3 * (1/3 * (m + 4)) - 8 = 0. Giải phương trình này, ta được m = 2.

Vậy, đáp án là B. m = 2.

NV
30 tháng 8 2020

2.

\(y'=3x^2+6\left(m-1\right)x+6m-12\)

Để hàm số có 2 cực trị

\(\Leftrightarrow\Delta'=9\left(m-1\right)^2-3\left(6m-12\right)>0\)

\(\Leftrightarrow9m^2-36m+45>0\) (luôn đúng)

Tiến hành chia y cho y' và lấy phần dư ta được pt đường thẳng AB có dạng:

\(y=\left(2m-6\right)x-2m^2+6m-5\)

AB song song d khi và chỉ khi:

\(\left\{{}\begin{matrix}2m-6=-4\\-2m^2+6m-5\ne1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\-2m^2+6m-6\ne0\end{matrix}\right.\) \(\Rightarrow m=1\)

NV
30 tháng 8 2020

1.

Đường thẳng d: \(9x-2y+5=0\Leftrightarrow y=\frac{9}{2}x+\frac{5}{2}\)

\(y'=3x^2+4\left(m-1\right)x+m^2-4m+1\)

Để hàm số có 2 cực trị

\(\Leftrightarrow\Delta'=4\left(m-1\right)^2-3m^2+12m-3>0\)

\(\Leftrightarrow m^2+4m+1>0\)

Khi đó, tiến hành chia \(y\) cho \(y'\) và lấy phần dư ta được pt AB có dạng:

\(y=\left(\frac{2}{3}m^2-\frac{32}{9}m+\frac{14}{9}\right)x-2m^2-2-\frac{2}{9}\left(m-1\right)\left(m^2-4m+1\right)\)

Để AB vuông góc d \(\Leftrightarrow\) tích 2 hệ số góc bằng -1

\(\Leftrightarrow\frac{9}{2}\left(\frac{2}{3}m^2-\frac{32}{9}m+\frac{14}{9}\right)=-1\)

\(\Leftrightarrow3m^2-16m+8=0\) \(\Rightarrow\left[{}\begin{matrix}m=\frac{8+2\sqrt{10}}{3}\\m=\frac{8-2\sqrt{10}}{3}\end{matrix}\right.\)

Bạn nên tính toán lại cho chắc