K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 3 2019

Ta có \(x+y+z+t\ge4\sqrt[4]{xyzt}\Rightarrow xyzt\le1\)

Áp dụng BĐT: \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{2}{\sqrt{ab}+1}\)

\(A=\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}+\frac{1}{t^2+1}\ge\frac{2}{xy+1}+\frac{2}{zt+1}=2\left(\frac{1}{xy+1}+\frac{1}{zt+1}\right)\)

\(A\ge2.\left(\frac{2}{\sqrt{xyzt}+1}\right)\ge\frac{2.2}{1+1}=2\)

\(\Rightarrow A_{max}=2\) khi \(x=y=z=t=1\)

NV
13 tháng 3 2019

Dòng 3 sang 4 bạn vẫn áp dụng BĐT \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{2}{\sqrt{ab}+1}\) với \(a=xy;b=zt\)

Sau đó do \(xyzt\le1\Rightarrow\sqrt{xyzt}+1\le1+1=2\Rightarrow2.\frac{2}{\sqrt{xyzt}+1}\ge\frac{2.2}{2}\)

18 tháng 4 2019

Bài này dùng Cô si ngược dấu:

Áp dụng BĐT Cô si:\(\frac{1}{x^2+1}=1-\frac{x^2}{x^2+1}\ge1-\frac{x^2}{2x}=1-\frac{x}{2}\)

Tương tự với ba BĐT còn lại và cộng theo vế ta được:\(VT\ge4-\frac{x+y+z+t}{2}=2\)

Dấu "=' xảy ra tại a = b = c = 1

Vậy min A = 2 khi và chỉ khi a = b = c = 1

18 tháng 4 2019

tth ngược dấu nhé 

\(A=\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}+\frac{1}{t^2+1}\)

\(\Leftrightarrow\)\(-A+4=\left(1-\frac{1}{x^2+1}\right)+\left(1-\frac{1}{y^2+1}\right)+\left(1-\frac{1}{z^2+1}\right)+\left(1-\frac{1}{t^2+1}\right)\)

\(\Leftrightarrow\)\(-A+4\ge1-\frac{x}{2}+1-\frac{y}{2}+1-\frac{z}{2}+1-\frac{t}{2}=4-\frac{x+y+z+t}{2}=2\)

\(\Leftrightarrow\)\(-A+4\ge2\)

\(\Leftrightarrow\)\(A\le2\)

Tham khảo link này nha

https://olm.vn/hoi-dap/detail/243232541423.htm

29 tháng 12 2019

2. Áp dụng bđt \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) :

\(B=\frac{x}{x+x+y+z}+\frac{y}{x+y+y+z}+\frac{z}{x+y+z+z}\) \(=x\cdot\frac{1}{\left(x+y\right)+\left(x+z\right)}+y\cdot\frac{1}{\left(x+y\right)+\left(y+z\right)}+z\cdot\frac{1}{\left(x+z\right)+\left(y+z\right)}\)

\(\le\frac{1}{4}\cdot x\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{4}y\left(\frac{1}{x+y}+\frac{1}{y+z}\right)+\frac{1}{4}z\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)

\(\Rightarrow B\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{y}{x+y}+\frac{y}{y+z}+\frac{z}{y+z}+\frac{x}{x+z}+\frac{z}{x+z}\right)=\frac{3}{4}\)

Dấu "=" \(\Leftrightarrow x=y=z=\frac{1}{3}\)

29 tháng 12 2019

Giải hộ mình với mn

NV
12 tháng 6 2020

Từ hàng 2 rút gọn xuống hàng 3 OK rồi đúng ko?

Sử dụng BĐT: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\)

\(\Rightarrow-\left(ab+bc+ca\right)\ge-\frac{1}{3}\left(a+b+c\right)^2\)

\(\Rightarrow-\frac{1}{2}\left(ab+bc+ca\right)\ge-\frac{1}{6}\left(a+b+c\right)^2\)

NV
12 tháng 6 2020

\(S=x-\frac{xy^2}{1+y^2}+y-\frac{yz^2}{1+z^2}+z-\frac{zx^2}{1+x^2}\)

\(S\ge x+y+z-\frac{xy^2}{2y}-\frac{yz^2}{2z}-\frac{zx^2}{2x}\)

\(S\ge3-\frac{1}{2}\left(xy+yz+zx\right)\ge3-\frac{1}{6}\left(x+y+z\right)^2=\frac{3}{2}\)

\(S_{min}=\frac{3}{2}\) khi \(x=y=z=1\)

9 tháng 2 2019

Ta có: \(\frac{x+1}{y^2+1}=\left(x+1\right).\frac{1}{y^2+1}=\left(x+1\right)\left(1-\frac{y^2}{y^2+1}\right)\)

\(\ge\left(x+1\right)\left(1-\frac{y^2}{2y}\right)=x+1-\frac{y\left(x+1\right)}{2}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế:

\(P\ge\left(x+y+z+3\right)-\frac{x\left(z+1\right)+y\left(x+1\right)+z\left(y+1\right)}{2}\)

\(=6-\frac{\left(xy+yz+zx\right)+\left(x+y+z\right)}{2}\) (*)

Lại có BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)

Thật vậy,ta có: BĐT \(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

Thay vào (*),ta có: \(P\ge6-\frac{\left(xy+yz+zx\right)+\left(x+y+z\right)}{2}\)

\(\ge6-\frac{\frac{\left(x+y+z\right)^2}{3}+3}{2}=6-\frac{3+3}{2}=3\)

Dấu "=" xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)

Vậy \(P_{min}=3\Leftrightarrow x=y=z=1\)

9 tháng 2 2019

Bài t đúng 100% nhá,đứa nào tk sai t nhở? ngon vô làm lại=)

24 tháng 7 2020

x(x+1)+y(y+1)+z(z+1) \(\le18\)

<=> \(x^2+y^2+z^2+\left(x+y+z\right)\le18\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow54\ge\left(x+y+z\right)^2+3\left(x+y+z\right)\)

\(\Leftrightarrow-9\le x+y+z\le6\)

\(\Rightarrow0\le x+y+z\le6\)

\(\hept{\begin{cases}\frac{1}{x+y+1}+\frac{x+y+1}{25}\ge\frac{2}{5}\\\frac{1}{y+z+1}+\frac{y+z+1}{25}\ge\frac{2}{5}\\\frac{1}{z+x+1}+\frac{z+x+1}{25}\ge\frac{2}{5}\end{cases}}\Rightarrow B+\frac{2\left(x+y+z\right)+3}{25}\ge\frac{6}{5}\)

\(\Rightarrow B\ge\frac{27}{25}-\frac{2}{25}\left(x+y+z\right)\ge\frac{15}{25}=\frac{3}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y=z>0;x+y+z=6\\\left(x+y+1\right)^2=\left(y+z+1\right)^2=\left(z+x+1\right)^2=25\end{cases}\Leftrightarrow x=y=z=2}\)

vậy giá trị nhỏ nhất cho B=3/5 khi x=y=z=2

27 tháng 7 2020

Hai Ngox  Xem laị  từ dòng thứ 2  và dòng thứ 3 xuống dưới. Nhiều lỗi quá!

3 tháng 2 2020

\(M\left(x+y+z\right)=\left(z^2+y^2+z^2\right)+2+\frac{\left(x^2+1\right)\left(y+z\right)}{x}+\frac{\left(y^2+1\right)\left(z+x\right)}{y}+\frac{\left(z^2+1\right)\left(x+y\right)}{z}\)

\(=5+\frac{\left(x^2+1\right)\left(y+z\right)}{x}+\frac{\left(y^2+1\right)\left(z+x\right)}{y}+\frac{\left(z^2+1\right)\left(x+y\right)}{z}\)

\(\ge5+2\left(y+z\right)+2\left(z+x\right)+2\left(x+y\right)=5+4\left(x+y+z\right)\) ( Sử dụng BĐT Cô-si cho 2 số dương ý)

\(\Rightarrow M\ge\frac{5}{x+y+z}+4\)

Mặt khác: \(\left(x+y+z\right)^2\le\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)=9\)

\(\Rightarrow x+y+z\le3\)

Do đó: \(M\ge\frac{5}{3}+4=\frac{17}{3}\)

\(M=\frac{17}{3}\Leftrightarrow x=y=z=1\)

\(\Rightarrow Min_A=\frac{17}{3}\)

3 tháng 2 2020

Bạn làm rõ dòng đầu tiên giúp mình nha!