K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2017

đề sai

15 tháng 3 2017

uk t ấn nhầm . t ghi lại đúng đây c lm hộ t vs

\(P=\dfrac{1}{a\left(2b+2c-1\right)}+\dfrac{1}{b\left(2c+2a-1\right)}+\dfrac{1}{c\left(2a+2b-1\right)}\)

15 tháng 3 2017

\(P=\dfrac{1}{a\left(2b+2c-1\right)}+\dfrac{1}{b\left(2c+2a-1\right)}+\dfrac{1}{c\left(2a+2b-1\right)}\)

\(P=\dfrac{1}{a\left[2b+2c-\left(a+b+c\right)\right]}+\dfrac{1}{b\left[2c+2a-\left(a+b+c\right)\right]}+\dfrac{1}{c\left[2a+2b-\left(a+b+c\right)\right]}\)

\(P=\dfrac{1}{a\left(b+c-a\right)}+\dfrac{1}{b\left(c+a-b\right)}+\dfrac{1}{c\left(a+b-c\right)}\)

\(P=\dfrac{1}{ab+ac-a^2}+\dfrac{1}{bc+ab-b^2}+\dfrac{1}{ca+bc-c^2}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow P\ge\dfrac{\left(1+1+1\right)^2}{-a^2-b^2-c^2+2ab+2bc+2ca}=\dfrac{9}{-\left[a^2+b^2+c^2-2\left(ab+bc+ca\right)\right]}\) ( 1 )

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow a^2+b^2+c^2-2\left(ab+bc+ca\right)\ge-\left(ab+bc+ca\right)\)

\(\Rightarrow-\left[a^2+b^2+c^2-2\left(ab+bc+ca\right)\right]\le ab+bc+ca\)

\(\Rightarrow\dfrac{9}{-\left[a^2+b^2+c^2-2\left(ab+bc+ca\right)\right]}\ge\dfrac{9}{ab+bc+ca}\)

Từ ( 1 )

\(\Rightarrow P\ge\dfrac{9}{ab+bc+ca}\)

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow1\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow\dfrac{1}{3}\ge ab+bc+ca\)

\(\Rightarrow27\le\dfrac{9}{ab+bc+ca}\)

\(\Rightarrow P\ge27\)

Vậy \(P_{min}=27\)

6 tháng 1 2019

Cauchy-Schwarz dạng Engel 2 lần : 

\(P=\frac{1}{a\left(2b+2c-1\right)}+\frac{1}{b\left(2c+2a-1\right)}+\frac{1}{c\left(2a+2b-1\right)}\)

\(P=\frac{1}{a\left(-a+b+c\right)}+\frac{1}{b\left(a-b+c\right)}+\frac{1}{c\left(a+b-c\right)}\)

\(P=\frac{1}{a-2a^2}+\frac{1}{b-2b^2}+\frac{1}{c-2c^2}\ge\frac{9}{\left(a+b+c\right)-2\left(a^2+b^2+c^2\right)}\ge\frac{9}{1-\frac{2}{3}}=\frac{9}{\frac{1}{3}}=27\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)

6 tháng 1 2019

Cách của bạn sao chỗ cuối lại thế ạ ? Bạn giải hộ mình rõ hơn được không ?

NV
25 tháng 5 2020

\(a+b=1-c>\frac{1}{2}>c\)

Tương tự \(b+c>a;a+c>b\)

\(VT=\frac{1}{a\left(b+c-a\right)}+\frac{1}{b\left(a+c-b\right)}+\frac{1}{c\left(a+b-c\right)}\)

\(VT\ge\frac{4}{\left(a+b+c-a\right)^2}+\frac{4}{\left(b+a+c-b\right)^2}+\frac{4}{\left(c+a+b-c\right)^2}\)

\(VT\ge\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}\ge\frac{4}{3}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)^2\)

\(VT\ge\frac{4}{3}\left(\frac{9}{2\left(a+b+c\right)}\right)^2=\frac{4.81}{3.4}=27\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

17 tháng 11 2017

Từ \(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)+2017\)

\(\Leftrightarrow7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\le6\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)+2017\)\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\le2017\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(T=\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)

\(=\dfrac{1}{\sqrt{\left(2+1\right)\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{\left(2+1\right)\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{\left(2+1\right)\left(2c^2+a^2\right)}}\)

\(\le\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}\le\dfrac{1}{9}\left(\dfrac{2^2}{2a}+\dfrac{1^2}{b}\right)+\dfrac{1}{9}\left(\dfrac{2^2}{2b}+\dfrac{1^2}{c}\right)+\dfrac{1}{9}\left(\dfrac{2^2}{2c}+\dfrac{1^2}{a}\right)\)

\(\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)\)\(=\dfrac{1}{3a}+\dfrac{1}{3b}+\dfrac{1}{3c}\le\sqrt{\left(\dfrac{1}{81}+\dfrac{1}{81}+\dfrac{1}{81}\right)\left(\dfrac{9}{a^2}+\dfrac{9}{b^2}+\dfrac{9}{c^2}\right)}\)

\(\le\sqrt{\dfrac{1}{81}\cdot3\cdot9\cdot2017}=\sqrt{\dfrac{2017}{3}}\)

Vậy \(T_{Max}=\sqrt{\dfrac{2017}{3}}\) khi \(a=b=c=\sqrt{\dfrac{3}{2017}}\)

So kimochiii~

16 tháng 4 2017

Nhức nhối mãi bài này vì nó làm lag hết máy

Giải

Đặt \(x=\dfrac{b+c}{a};y=\dfrac{c+a}{b};z=\dfrac{a+b}{c}\)

Ta phải chứng minh \(Σ\dfrac{\left(x+2\right)^2}{x^2+2}\le8\)

\(\LeftrightarrowΣ\dfrac{2x+1}{x^2+2}\le\dfrac{5}{2}\LeftrightarrowΣ\dfrac{\left(x-1\right)^2}{x^2+2}\ge\dfrac{1}{2}\)

Lại theo BĐT Cauchy-Schwarz ta có:

\(Σ\dfrac{\left(x-1\right)^2}{x^2+2}\ge\dfrac{\left(x+y+z-3\right)^2}{x^2+y^2+z^2+6}\)

Ta còn phải chứng minh

\(2\left(x^2+y^2+z^2+2xy+2yz+2xz-6x-6y-6z+9\right)\)\(\ge x^2+y^2+z^2+6\)

\(\Leftrightarrow x^2+y^2+z^2+4\left(xy+yz+xz\right)-12\left(x+y+z\right)+12\ge0\)

Bây giờ có \(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\ge12\left(xyz\ge8\right)\)

Còn phải chứng minh \(\left(x+y+z\right)^2+24-12\left(x+y+z\right)+12\ge0\)

\(\Leftrightarrow\left(x+y+z-6\right)^2\ge0\) (luôn đúng)

16 tháng 4 2017

Bởi vì BĐT là thuần nhất, ta có thể chuẩn hóa \(a+b+c=3\). Khi đó

\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}=\dfrac{a^2+6a+9}{3a^2-6a+9}=\dfrac{1}{3}\left(1+2\cdot\dfrac{4a+3}{2+\left(a-1\right)^2}\right)\)

\(\le\dfrac{1}{3}\left(1+2\cdot\dfrac{4a+3}{2}\right)=\dfrac{4a+4}{3}\)

Tương tự ta cho 2 BĐT còn lại ta cũng có:

\(\dfrac{\left(2b+c+a\right)^2}{2b^2+\left(a+c\right)^2}\ge\dfrac{4b+4}{3};\dfrac{\left(2c+b+a\right)^2}{2c^2+\left(a+b\right)^2}\ge\dfrac{4c+4}{3}\)

Cộng theo vế 3 BĐT trên ta có:

\(Σ\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}\geΣ\left(4a+4\right)=8\)