K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2023

def binary_search(arr, x):
   left = 0
   right = len(arr) - 1

   while left <= right:
       mid = (left + right) // 2

       if arr[mid] == x:
           return mid
       elif arr[mid] < x:
           right = mid - 1
       else:
           left = mid + 1

   return -1

# Sử dụng hàm để tìm kiếm giá trị 5 trong dãy sắp xếp giảm dần [9, 8, 6, 5, 3, 1]
arr = [9, 8, 6, 5, 3, 1]
x = 5
result = binary_search(arr, x)

if result != -1:
   print("Element is present at index", str(result))
else:
   print("Element is not present in array")

23 tháng 8 2023

- Các thuật toán và chương trình mà em đã biết đều là các thuật toán cơ bản trong lập trình và giải quyết các vấn đề thông thường. Các điểm chung của chúng bao gồm: Tính đơn giản, độ phức tạp thấp.

- Theo em, để thiết kế một thuật toán đúng giải một bái toàn cho trước cần trải qua các bước:

1. Xác định bài toán

2. Tìm cấu trúc dữ liệu biểu diễn thuật toán.

3. Tìm Thuật Toán.

4. Lập Trình (Programming)

5. Kiểm thử chương trình (Testing program)

6. Tối ưu chương trình (optimization program)

D
datcoder
CTVVIP
22 tháng 10 2023

a)

import time

def linear_search(arr, x):

 """

 Tìm kiếm tuyến tính trong dãy arr để tìm giá trị x.

 Trả về vị trí của x trong dãy nếu x được tìm thấy, -1 nếu không tìm thấy.

 """

 n = len(arr)

 for i in range(n):

  if arr[i] == x:

   return i

 return -1

# Dãy số A

A = [3, 1, 0, 10, 13, 16, 9, 7, 5, 11]

# Phần tử cần tìm kiếm

C = 9

# Bắt đầu đo thời gian

start_time = time.perf_counter()

# Tìm kiếm phần tử C trong dãy A

result = linear_search(A, C)

# Kết thúc đo thời gian

end_time = time.perf_counter()

if result != -1:

 print(f"Phần tử {C} được tìm thấy tại vị trí {result} trong dãy A.")

else:

 print(f"Phần tử {C} không có trong dãy A.")

print(f"Thời gian thực hiện thuật toán: {end_time - start_time} giây.")

b)

import time

def binary_search(arr, x):

 """

 Tìm kiếm nhị phân trong dãy arr để tìm giá trị x.

 Trả về vị trí của x trong dãy nếu x được tìm thấy, -1 nếu không tìm thấy.

 """

 left, right = 0, len(arr) - 1

 while left <= right:

  mid = (left + right) // 2

  if arr[mid] == x:

   return mid

  elif arr[mid] < x:

   left = mid + 1

  else:

   right = mid - 1

 return -1

# Dãy số A đã được sắp xếp

A = [0, 1, 3, 5, 7, 9, 10, 11, 13, 16]

# Phần tử cần tìm kiếm

C = 9

# Bắt đầu đo thời gian

start_time = time.perf_counter()

# Tìm kiếm phần tử C trong dãy A bằng thuật toán tìm kiếm nhị phân

result = binary_search(A, C)

# Kết thúc đo thời gian

end_time = time.perf_counter()

if result != -1:

 print(f"Phần tử {C} được tìm thấy tại vị trí {result} trong dãy A.")

else:

 print(f"Phần tử {C} không có trong dãy A.")

print(f"Thời gian thực hiện thuật toán: {end_time - start_time} giây.")

-Thời gian thực hiện ở câu a là 8.99999,thời gian thực hiện ở câu b là 6,49999 giây.

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Thuật toán tìm kiếm nhị phân thực hiện tìm kiếm một mảng đã sắp xếp bằng cách liên tục chia các khoảng tìm kiếm thành 1 nửa. Bắt đầu với một khoảng từ phần tử đầu mảng, tới cuối mảng. Nếu giá trị của phần tử cần tìm nhỏ hơn giá trị của phần từ nằm ở giữa khoảng thì thu hẹp phạm vi tìm kiếm từ đầu mảng tới giửa mảng và nguợc lại. Cứ thế tiếp tục chia phạm vi thành các nửa cho dến khi tìm thấy hoặc đã duyệt hết.

Thuật toán tìm kiếm nhị phân tỏ ra tối ưu hơn so với tìm kiếm tuyết tính ở các mảng có độ dài lớn và đã được sắp xếp. Ngược lại, tìm kiếm tuyến tính sẽ tỏ ra hiệu quả hơn khi triển khai trên các mảng nhỏ và chưa được sắp xếp.

QT
Quoc Tran Anh Le
Giáo viên
9 tháng 11 2023

a. Ví dụ một bài toán tìm kiếm trong thực tế: Giáo viên muốn tìm tên bạn Chung trong danh sách lớp sau:

Các bước thực hiện thuật toán tìm kiếm nhị phân cho bài toán trên:

- Bước 1: Xét vị trí ở giữa dãy, đó là vị trí số 5

- Vì sau bước 2 đã tìm thấy tên học sinh nên thuật toán kết thúc.

b) Thuật toán tìm kiếm nhị phân

- Thuật toán tìm kiếm nhị phân thu hẹp được phạm vi tìm kiếm chỉ còn tối đa là một nửa sau mỗi lần lặp. Thuật toán chia bài toán thành những bài toán nhỏ hơn giúp tăng hiệu quả tìm kiếm.

Thuật toán tuần tự

- Mô tả thuật toán phải cụ thể, rõ ràng, đầy đủ, đầu vào là gì, đầu ra là gì và chỉ rõ sự kết thúc thuật toán.

- Cần mô tả thuật toán cho tốt thì người máy hay máy tính mới hiểu đúng và thực hiện được.

- Nếu không, kết quả thực hiện thuật toán có thể không như mong đợi.

18 tháng 7 2023

THAM KHẢO!

1.Thuật toán sắp xếp chèn (Insertion Sort):

def insertion_sort(arr):

  for i in range(1, len(arr)):

   key = arr[i]

   j = i - 1

   while j >= 0 and arr[j] > key:

    arr[j + 1] = arr[j]

    j -= 1

   arr[j + 1] = key

  return arr

A = [5, 8, 1, 0, 10, 4, 3]

sorted_A = insertion_sort(A)

print("Dãy A sau khi sắp xếp chèn:", sorted_A)

2. Thuật toán sắp xếp chọn (Selection Sort):

def selection_sort(arr):

  for i in range(len(arr)):

   min_idx = i

   for j in range(i + 1, len(arr)):

    if arr[j] < arr[min_idx]:

     min_idx = j

   arr[i], arr[min_idx] = arr[min_idx], arr[i]

  return arr

A = [5, 8, 1, 0, 10, 4, 3]

sorted_A = selection_sort(A)

print("Dãy A sau khi sắp xếp chọn:", sorted_A)

3.Thuật toán sắp xếp nổi bọt (Bubble Sort):

def bubble_sort(arr):

  n = len(arr)

  for i in range(n - 1):

   for j in range(n - 1 - i):

    if arr[j] > arr[j + 1]:

     arr[j], arr[j + 1] = arr[j + 1], arr[j]

  return arr

A = [5, 8, 1, 0, 10, 4, 3]

sorted_A = bubble_sort(A)

print("Dãy A sau khi sắp xếp nổi bọt:", sorted_A)

QT
Quoc Tran Anh Le
Giáo viên
9 tháng 11 2023

Sau lần chia đôi đầu tiên, pham vi tìm kiếm còn lại n/2 số, sau khi chia đôi lần thứ hai, dãy còn lại n/4 số, sau khi chia đôi lần thứ dãy còn lại n/8, …sau khi chia đôi lần k dãy còn lại n/2.­­­­­­­mũ k. Kết thúc khi 2 mũ k sấp xỉ n.

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Def BinrySearch(A,K):

     left=0

     right=len(A)-1

     while left<=right:

         mid=(left+right)//2

         if A[mid]==K:

          return mid

         elif A[mid]<K:

          left=mid-1

         else:

          right=mid+1

     return -1

input_file=open(“diemthi_sx.inp”)

ds_diem=[]

for line in input_file.readlines():

     ds_diem.append(float(line))

input_file.close():

diem=float(input(‘nhập điểm số cần kiểm tra:’))

vitri=BanirySearch(ds_diem,diem)

if vitri==-1:

     print(‘không tồn tại điểm số cần tìm trong danh sách’)

else:

     print(‘điểm cần tìm nằm ở hàng thứ’,vitri,’trong danh sách’)

18 tháng 7 2023

THAM KHẢO!

Dựa vào hai yếu tố là thời gian thực hiện thuật toán (còn gọi là độ phức tạp thuật toán) và dung lượng bộ nhớ cần thiết để lưu trữ dữ liệu.

Thuật toán tối ưu là sử dụng ít thời gian, ít bộ nhớ, ít phép toán, giải bài toán trên máy tính thường được tiến hành qua 5 bước xác định bài toán, lựa chọn hoặc thiết kế thuật toán, viết chương trình, hiệu chỉnh và viết tài liệu.

Dựa vào hai yếu tố là thời gian thực hiện thuật toán (còn gọi là độ phức tạp thuật toán) và dung lượng bộ nhớ cần thiết để lưu trữ dữ liệu.

Thuật toán tối ưu là sử dụng ít thời gian, ít bộ nhớ, ít phép toán, giải bài toán trên máy tính thường được tiến hành qua 5 bước xác định bài toán, lựa chọn hoặc thiết kế thuật toán, viết chương trình, hiệu chỉnh và viết tài liệu.

 

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

*Thuật toán sắp xếp chèn (Insertion Sort):

import time

def insertion_sort(arr):

 n = len(arr)

 for i in range(1, n):

  key = arr[i]

  j = i - 1

  while j >= 0 and arr[j] > key:

   arr[j + 1] = arr[j]

   j -= 1

  arr[j + 1] = key

# Dãy số nguyên đầu vào

A = [3, 1, 0, 10, 13, 16, 9, 7, 5, 1]

# In dãy số nguyên trước khi sắp xếp

print("Dãy số nguyên trước khi sắp xếp:", A)

# Bắt đầu đo thời gian thực hiện thuật toán

start_time = time.time()

# Gọi hàm sắp xếp chèn

insertion_sort(A)

# Kết thúc đo thời gian thực hiện thuật toán

end_time = time.time()

# In dãy số nguyên sau khi sắp xếp

print("Dãy số nguyên sau khi sắp xếp:", A)

# In thời gian thực hiện thuật toán

print("Thời gian thực hiện thuật toán: {:.6f} giây".format(end_time - start_time))

Thời gian thực hiện là 0 giây

*Thuật toán sắp xếp chọn:

import time

def selection_sort(arr):

 n = len(arr)

 for i in range(n):

  min_idx = i

  for j in range(i + 1, n):

   if arr[j] < arr[min_idx]:

    min_idx = j

  arr[i], arr[min_idx] = arr[min_idx], arr[i]

# Dãy số nguyên đầu vào

A = [3, 1, 0, 10, 13, 16, 9, 7, 5, 1]

# In dãy số nguyên trước khi sắp xếp

print("Dãy số nguyên trước khi sắp xếp:", A)

# Bắt đầu đo thời gian thực hiện thuật toán

start_time = time.time()

# Gọi hàm sắp xếp chọn

selection_sort(A)

# Kết thúc đo thời gian thực hiện thuật toán

end_time = time.time()

# In dãy số nguyên sau khi sắp xếp

print("Dãy số nguyên sau khi sắp xếp:", A)

# In thời gian thực hiện thuật toán

print("Thời gian thực hiện thuật toán: {:.6f} giây".format(end_time - start_time))

Thời gian thực hiện là: 0 giây

*Thuật toán sắp xếp nổi bọt:

import time

def bubble_sort(arr):

 n = len(arr)

 for i in range(n - 1):

  for j in range(n - i - 1):

   if arr[j] > arr[j + 1]:

    arr[j], arr[j + 1] = arr[j + 1], arr[j]

# Dãy số nguyên đầu vào

A = [3, 1, 0, 10, 13, 16, 9, 7, 5, 1]

# In dãy số nguyên trước khi sắp xếp

print("Dãy số nguyên trước khi sắp xếp:", A)

# Bắt đầu đo thời gian thực hiện thuật toán

start_time = time.time()

# Gọi hàm sắp xếp nổi bọt

bubble_sort(A)

# Kết thúc đo thời gian thực hiện thuật toán

end_time = time.time()

# In dãy số nguyên sau khi sắp xếp

print("Dãy số nguyên sau khi sắp xếp:", A)

# In thời gian thực hiện thuật toán

print("Thời gian thực hiện thuật toán: {:.6f} giây".format(end_time - start_time))

Thời gian thực hiện là: 0 giây