Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
0,25 = (0,5)2
\(\dfrac{1}{49}\) = (\(\dfrac{1}{7}\))2
- \(\dfrac{27}{125}\) = (- \(\dfrac{3}{5}\))3
\(\dfrac{81}{16}\) = ( \(\dfrac{9}{4}\))2
\(\dfrac{169}{196}\) = (\(\dfrac{13}{14}\))2
\(2^6\)\(0,5^2\)\(\left(\frac{1}{2}\right)^4\)\(\left(\frac{1}{2}\right)^8\)\(\left(\frac{11}{12}\right)^2\)
\(\dfrac{81}{125}-\dfrac{8}{27}=\dfrac{3^4}{5^3}-\dfrac{2^3}{3^3}\)
Bài 3:
a) \(\left(x-\frac{1}{2}\right)^2=0\)
\(\Rightarrow x-\frac{1}{2}=0\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
b) \(\left(x-2\right)^2=1\)
\(\Rightarrow x-2=\pm1\)
+) \(x-2=1\Rightarrow x=3\)
+) \(x-2=-1\Rightarrow x=1\)
Vậy \(x=3\) hoặc \(x=1\)
c) \(\left(2x-1\right)^3=-8\)
\(\Rightarrow\left(2x-1\right)^3=\left(-2\right)^3\)
\(\Rightarrow2x-1=-2\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=\frac{-1}{2}\)
Vạy \(x=\frac{-1}{2}\)
d) \(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2=\left(\frac{1}{4}\right)^2\)
\(\Rightarrow x+\frac{1}{2}=\frac{1}{4}\)
\(\Rightarrow x=\frac{-1}{4}\)
Vậy \(x=\frac{-1}{4}\)
-8/27 = (-2/3)3 nha còn cái kia mình cụng ko bít đâu mình cũng đang hỏi
a) \({\left( {\frac{8}{9}} \right)^3} \cdot \frac{4}{3} \cdot \frac{2}{3} = {\left( {\frac{8}{9}} \right)^3}.\frac{8}{9} = {\left( {\frac{8}{9}} \right)^{3+1}}={\left( {\frac{8}{9}} \right)^4}\)
b) \({\left( {\frac{1}{4}} \right)^7} \cdot 0,25 = {\left( {0,25} \right)^7}.0,25 ={\left( {0,25} \right)^{7+1}}= {\left( {0,25} \right)^8}\)
c) \({( - 0,125)^6}:\frac{{ - 1}}{8} = {\left( {\frac{{ - 1}}{8}} \right)^6}:\frac{{ - 1}}{8} = {\left( {\frac{{ - 1}}{8}} \right)^{6-1}}= {\left( {\frac{{ - 1}}{8}} \right)^5}\)
d) \({\left[ {{{\left( {\frac{{ - 3}}{2}} \right)}^3}} \right]^2} = {\left( {\frac{{ - 3}}{2}} \right)^{3.2}} = {\left( {\frac{{ - 3}}{2}} \right)^6}\)
Cách viết khác : \(\frac{16}{81}=\frac{2^4}{3^4}=\left(\frac{2}{3}\right)^4\)
Chúc bạn học tốt ^^
\(\begin{array}{l}0,49 = {\left( {0,7} \right)^2};\\\,\frac{1}{{32}} =\frac{1^5}{2^5}={\left( {\frac{1}{2}} \right)^5};\\\,\frac{{ - 8}}{{125}} =\frac{(-2)^3}{5^3}= {\left( {\frac{{ - 2}}{5}} \right)^3};\end{array}\)
\(\frac{{16}}{{81}} =\frac{4^2}{9^2}= {\left( {\frac{4}{9}} \right)^2} (hoặc \,\frac{{16}}{{81}} =\frac{2^4}{3^4}= {\left( {\frac{2}{3}} \right)^4});\\\,\frac{{121}}{{169}} =\frac{11^2}{13^2}= {\left( {\frac{{11}}{{13}}} \right)^2}\)