Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P\left(x\right)=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+2008\)
\(P\left(x\right)=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+2008\)
Đặt \(a=x^2+10x+21\)
\(\Rightarrow P\left(a\right)=\left(a-5\right)\left(a+3\right)+2008\)
\(P\left(a\right)=a^2-2a+1993\)
\(\Rightarrow P\left(a\right)\) chia \(a\) dư \(1993\)
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+2008=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+2008\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)\)
đặt \(x^2+10x+21=a\)
ta có \(\left(a-5\right)\left(a+3\right)=a^2-2a-15+2008=a\left(a-2\right)+1993\)
ta có a(a-2) chia hết cho a hay x^2+10x+21
số dư là 1993
Đặt: \(x^2+10x+21=t\)
Ta có: \(A=\left(\left(x+2\right)\left(x+8\right)\right)\left(\left(x+4\right)\left(x+6\right)\right)+2008\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+2008\)
Thay t vào ta được: \(A=\left(t-5\right)\left(t+3\right)+2008=t^2-2t+15+2008=t^2-2t+2023\)
Vậy A chia t dư 2023
Câu 1 :
\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)=\left(2x\right)^3+y^3=8x^3+y^3\)Câu 2:
\(A=3\left(2x-3\right)\left(3x+2\right)-2\left(x+4\right)\left(4x-3\right)+9x\left(4-x\right)=0\)\(\Leftrightarrow3\left(6x^2-2x-6\right)-2\left(4x^2+13x-12\right)+36x-9x^2=0\)\(\Leftrightarrow18x^2-6x-18-8x^2-26x+24+36x-9x^2=0\)\(\Leftrightarrow x^2+4x+6=0\)
\(\Leftrightarrow\left(x+2\right)^2=-2\)
Ta có:
\(\left(x+2\right)^2\ge0\forall x\)
Vậy pt vô nghiệm
Vậy:ko......
Câu 3:
\(\left(5x-3\right)\left(7x+2\right)-35x\left(x-1\right)=42\)
\(\Leftrightarrow35x^2+10x-21x-6-35x^2+35x-42=0\)\(\Leftrightarrow14x=48\Leftrightarrow x=\dfrac{7}{24}\)
Câu 4:
\(\left(3x+5\right)\left(2x-1\right)+\left(5-6x\right)\left(x+2\right)=x\)
\(\Leftrightarrow6x^2-3x+10x-5+5x+10-6x^2-12x-x=0\)\(\Leftrightarrow-x=-5\Rightarrow x=5\)
câu 6,
Câu 6: \(\left(10x+9\right)x-\left(5x-1\right)\left(2x+3\right)=8\)
\(\Rightarrow10x^2+9x-\left(10x^2-2x+15x-3\right)=8\)
\(\Rightarrow10x^2+9x-10x^2+2x-15x+3=8\)
\(\Rightarrow-4x+3=8\)
\(\Rightarrow-4x=5\Rightarrow x=\dfrac{-5}{4}\)
Câu 7: \(x\left(x+1\right)\left(x+6\right)-x^3=5x\)
\(\Rightarrow\left(x^2+x\right)\left(x+6\right)-x^3=5x\)
\(\Rightarrow x^3+x^2+6x^2+6x-x^3=5x\)
\(\Rightarrow7x^2=-x\)
\(\Rightarrow7x=-1\Rightarrow x=\dfrac{-1}{7}\).
Bài 1: \(10x+3-5x=4x+2\)
\(\Leftrightarrow5x+3=4x+2\) \(\Leftrightarrow5x-4x=2-3\Leftrightarrow x=-1\)
Vậy x = - 1
Bài 2: \(Q=\left(x+3\right)^2+\left(x+3\right)\left(x-3\right)-2\left(x+2\right)\left(x-4\right)\)
\(=x^2+6x+9+x^2-9-2\left(x^2-2x-8\right)\)
\(=x^2+6x+9+x^2-9-2x^2+4x+16\)
\(=6x+4x+16=10x+16\)
Thay \(x=\dfrac{1}{2}\) ta được \(Q=10\cdot\dfrac{1}{2}+16=5+16=21\)
\(\left(x+2\right)\left(x-2\right)-\left(x-3\right)\left(x+1\right)\)
\(=x^2-4-\left(x^2-2x-3\right)\)
\(=2x-1\)
\(\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
Có 1 lỗi sai nho nhỏ ở phần cuối
1992 - t = 1992 - (x^2 + 10x + 20) = 1972 - x^2 - 10x
Ờ... đọc không hiểu gì hết mà thôi để dành năm sau học rồi đọc. Cảm ơn nhiều nha :))