Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(sin^2x-cos^2x\ne0\Leftrightarrow cos2x\ne0\)
\(\Leftrightarrow2x\ne\frac{\pi}{2}+k\pi\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)
\(y=\dfrac{cotx}{cosx-1}\)
Đk:\(cosx-1\ne0\Leftrightarrow cosx\ne1\)\(\Leftrightarrow x\ne k\pi,k\in Z\)
\(D=R\backslash\left\{k\pi;k\in Z\right\}\)
Ý C
sin8x + 5 ≥ 0 sin8x ≥ -5
Vì giá trị của sin(x) nằm trong khoảng [-1, 1], nên ta có: -1 ≤ sin8x ≤ 1 -1 - 5 ≤ sin8x + 5 ≤ 1 + 5 -6 ≤ sin8x + 5 ≤ 6
Vậy, miền xác định của hàm số là D = R (tất cả các số thực).
Đáp án: A. D = R.
Để tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = √(sin3x), ta cần xem xét giá trị của hàm số trong miền xác định.Vì giá trị của hàm số sin(x) nằm trong khoảng [-1, 1], nên giá trị của hàm số sin3x nằm trong khoảng [-1, 1]. Vì căn bậc hai của một số không âm không thể nhỏ hơn 0, nên giá trị của hàm số y = √(sin3x) nằm trong khoảng [0, 1].
Vậy, giá trị lớn nhất của hàm số là M = 1 và giá trị nhỏ nhất là m = 0.
Đáp án: D. M = 1; m = 0.
\(tan\left(x-\frac{\pi}{4}\right)=tan3x\)
\(\Leftrightarrow3x=x-\frac{\pi}{4}+k\pi\)
\(\Leftrightarrow x=-\frac{\pi}{8}+\frac{k\pi}{2}\)
Ủa mà kiểm tra với máy tính có mỗi đáp án D đúng (y như tự luận) lấy đâu ra 2 câu đều bằng 0 nhỉ?
ĐKXĐ: \(cos\left(x+\frac{\pi}{3}\right)\ne0\Rightarrow x+\frac{\pi}{3}\ne\frac{\pi}{2}+k\pi\)
\(\Rightarrow x\ne\frac{\pi}{6}+k\pi\)
\(\Rightarrow D=R\backslash\left\{\frac{\pi}{6}+k\pi;k\in Z\right\}\)
Hàm số xác định khi: \(\sin x - 1\; \ne 0\; \Leftrightarrow \sin x \ne 1\; \Leftrightarrow x \ne \frac{\pi }{2} + k2\pi ,\;\;k \in \mathbb{Z}\)
Vậy ta chọn đáp án B