K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 9 2020

ĐKXĐ: \(sin^2x-cos^2x\ne0\Leftrightarrow cos2x\ne0\)

\(\Leftrightarrow2x\ne\frac{\pi}{2}+k\pi\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)

14 tháng 9 2021

\(y=\dfrac{cotx}{cosx-1}\)

Đk:\(cosx-1\ne0\Leftrightarrow cosx\ne1\)\(\Leftrightarrow x\ne k\pi,k\in Z\)

\(D=R\backslash\left\{k\pi;k\in Z\right\}\)

Ý C

14 tháng 9 2021

Lê Thị Thục Hiền CTV

\(cosx=1\Leftrightarrow x=k2\pi\)

21 tháng 8 2023
Để xác định miền xác định của hàm số y = √(sin8x + 5), ta cần tìm giá trị của x mà làm cho biểu thức bên trong dấu căn không âm.

sin8x + 5 ≥ 0 sin8x ≥ -5

Vì giá trị của sin(x) nằm trong khoảng [-1, 1], nên ta có: -1 ≤ sin8x ≤ 1 -1 - 5 ≤ sin8x + 5 ≤ 1 + 5 -6 ≤ sin8x + 5 ≤ 6

Vậy, miền xác định của hàm số là D = R (tất cả các số thực).

Đáp án: A. D = R.

Để tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = √(sin3x), ta cần xem xét giá trị của hàm số trong miền xác định.

Vì giá trị của hàm số sin(x) nằm trong khoảng [-1, 1], nên giá trị của hàm số sin3x nằm trong khoảng [-1, 1]. Vì căn bậc hai của một số không âm không thể nhỏ hơn 0, nên giá trị của hàm số y = √(sin3x) nằm trong khoảng [0, 1].

Vậy, giá trị lớn nhất của hàm số là M = 1 và giá trị nhỏ nhất là m = 0.

Đáp án: D. M = 1; m = 0.

NV
8 tháng 9 2020

\(tan\left(x-\frac{\pi}{4}\right)=tan3x\)

\(\Leftrightarrow3x=x-\frac{\pi}{4}+k\pi\)

\(\Leftrightarrow x=-\frac{\pi}{8}+\frac{k\pi}{2}\)

Ủa mà kiểm tra với máy tính có mỗi đáp án D đúng (y như tự luận) lấy đâu ra 2 câu đều bằng 0 nhỉ?

NV
19 tháng 10 2019

ĐKXĐ: \(cos\left(x+\frac{\pi}{3}\right)\ne0\Rightarrow x+\frac{\pi}{3}\ne\frac{\pi}{2}+k\pi\)

\(\Rightarrow x\ne\frac{\pi}{6}+k\pi\)

\(\Rightarrow D=R\backslash\left\{\frac{\pi}{6}+k\pi;k\in Z\right\}\)

19 tháng 10 2019

tan chứ đâu phải cos đâu bạn

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

\(\tan x = \frac{{\sin x}}{{\cos x}}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Hàm số xác định khi: \(\sin x - 1\; \ne 0\; \Leftrightarrow \sin x \ne 1\; \Leftrightarrow x \ne \frac{\pi }{2} + k2\pi ,\;\;k \in \mathbb{Z}\)

Vậy ta chọn đáp án B