K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2019

Xét tam giác ABD và tam giác BDC

có \(\widehat{DAB}=\widehat{CBD}\)

\(\widehat{ABD}=\widehat{BDC}\)(so le trong, AB // CD)

nên tam giác ABD đồng dạng với tam giác DBC

2

Xét tam giác ADC có

M là trung điểm của AD

N là trung điểm của AC

suy ra MN là đường trung bình của tam giác ADC

nên MN // DC (1)

Xét tam giác ABC có

K là trung điểm của BC

N là trung điểm của AC

suy ra NK là đường trung bình của tam giác ABC

nên NK //AB 

mà AB // CD 

do đó NK // CD (2)

Từ (1), (2) và theo tiên đề ơ-clít ta có

NK trùng với MN

do đó M,N,K thẳng hàng

19 tháng 5 2019

Hình bạn tự vẽ nhé ! 

Câu 1: 

Xét tam giác ABD và tam giác DBC có

Góc DAB = góc CBD 

Góc ABD = góc BDC ( so le trong AB // CD )

nên tam giác ABD đồng dạng tam giác DBC

Câu 2:

Xét tam giác ADC có: 

M là trung điểm của AD

N là trung điểm của AC

=> MN là đường trung bình của tam giác ADC => MN // DC (1)

Xét tam giác ABC có: 

K là trung điểm của BC

N là trung điểm của AC

=> NK là đường trung bình của tam giác ABC => NK // AB 

mà AB / CD => NK // CD (2)

Từ (1) và (2) theo tiên đề Ơ - clit ta có: 

NK trùng với MN => M, N, K thẳng hàng ( đpcm ) 

30 tháng 8 2019

Câu hỏi của Hồ Phong Thư - Toán lớp 8 - Học toán với OnlineMath

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0
14 tháng 7 2015

bạn hỏi thế này thì chả ai muốn làm -_- dài quá 

28 tháng 12 2015

Bạn gửi từng câu nhò thì các bạn khác dễ làm hơn!