K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2021

câu hỏi là j

29 tháng 10 2021

Cho tam giác ABC vuông tại A đường cao AH Có AB= 12cm ; AH = 9cm dạ đây ạ

10 tháng 4 2017

Em mới lớp 8 nên trình bày hơi lỗi xin anh thông cảm.

Xét tam giác HAC và tam giác ABC, ta có:

Góc C: góc chung

góc AHC = góc BAC (=90 độ)

Do đó: tam giác HAC đồng dạng với tam giác ABC

\(\Rightarrow\)\(\frac{HA}{HC}=\frac{AB}{AC}\Rightarrow AH=\frac{ABxHC}{AC}\left(1\right)\)

Xét tam giác HBA và tam giác ABC, ta có:

Góc B: góc chung

góc AHB = góc BAC (=90 độ)

Do đó: tam giác HAC đồng dạng với tam giác ABC

\(\Rightarrow\)\(\frac{HA}{HB}=\frac{AC}{ÁB}\Rightarrow AH=\frac{HBxAC}{AB}\left(2\right)\)

Từ (1) và (2) suy ra:

\(\frac{HBxAC}{AB}=\frac{HCxAB}{AC}\Rightarrow\frac{\left(AB\right)^2}{\left(AC\right)^2}=\frac{HB}{HC}=\frac{9}{4}\Rightarrow\frac{AB}{AC}=\frac{3}{2}\)

VÌ AD là đường phân giác của tam giác ABC nên:

\(\frac{DC}{DB}=\frac{AC}{AB}=\frac{2}{3}\)

Vậy \(\frac{DC}{DB}=\frac{2}{3}\)

10 tháng 4 2017

k cho em nha :V :D

17 tháng 6 2017

áp dụng hệ thức lg có AH ^2 =BH ,CH <=>BH,CH=36    (1)

TỪ BH-CH =9 =>BH =9+HC                                         (2)

TỪ (1) VÀ (2) SUY RA  HC=3cm hoặc CH = -12 cm vì cạnh tam giác k âm suy ra HC =3 cm suy ra BH=12 cm 

xong bn áp dụng pitago ý hay hệ thức lg cũng đc để tfm ra AB ,AC nha 

Ta có HC-HB=9

➞HC=9+HB

Áp dụng hệ thức lượng ta có:

AH2=HB.HCAH2=HB.HC

36=HB.(9+HB)36=HB.(9+HB)

⇔HB2+9HB-36=0

(HB−3)(HB+12)(HB−3)(HB+12)=0

⇔HB=3;HC=9

27 tháng 8 2020

A B C H

Bài làm:

Ta có: \(\sin B=\frac{4}{5}\Leftrightarrow\frac{AC}{BC}=\frac{4}{5}\) => \(AC=\frac{4}{5}BC=\frac{4}{5}.a\sqrt{5}=\frac{4a\sqrt{5}}{5}\)

Áp dụng định lý Pytago ta tính được:

\(AB=\sqrt{BC^2-AC^2}=\sqrt{5a^2-\frac{16}{5}a^2}=\sqrt{\frac{9}{5}a^2}=\frac{3a\sqrt{5}}{5}\)

Mà \(AH.BC=AB.AC\) => \(AH=\frac{AB.AC}{BC}=\frac{\frac{4a\sqrt{5}}{5}\cdot\frac{3a\sqrt{5}}{5}}{a\sqrt{5}}=\frac{12a\sqrt{5}}{25}\)

Áp dụng công thức ta tính được:

\(BH=\frac{AB^2}{BC}=\frac{\left(\frac{3a\sqrt{5}}{5}\right)^2}{a\sqrt{5}}=\frac{9a\sqrt{5}}{25}\)

\(CH=\frac{AC^2}{BC}=\frac{\left(\frac{4a\sqrt{5}}{5}\right)^2}{a\sqrt{5}}=\frac{16a\sqrt{5}}{25}\)

Vậy \(AB=\frac{3a\sqrt{5}}{5}\) ; \(AC=\frac{4a\sqrt{5}}{5}\) ; \(AH=\frac{12a\sqrt{5}}{25}\) ; \(BH=\frac{9a\sqrt{5}}{25}\) ; \(CH=\frac{16a\sqrt{5}}{25}\)

31 tháng 10 2024

Có cái nịt

 

22 tháng 8 2023

a) \(AH^2=HB.HC=50.8=400\)

\(\Rightarrow AH=20\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.20\left(50+8\right)=\dfrac{1}{2}.20.58\left(cm^2\right)\)

mà \(S_{ABC}=\dfrac{1}{2}AB.AC\)

\(\Rightarrow AB.AC=20.58=1160\)

Theo Pitago cho tam giác vuông ABC :

\(AB^2+AC^2=BC^2\)

\(\Rightarrow\left(AB+AC\right)^2-2AB.AC=BC^2\)

\(\Rightarrow\left(AB+AC\right)^2=BC^2+2AB.AC\)

\(\Rightarrow\left(AB+AC\right)^2=58^2+2.1160=5684\)

\(\Rightarrow AB+AC=\sqrt[]{5684}=2\sqrt[]{1421}\left(cm\right)\)

Chu vi Δ ABC :

\(AB+AC+BC=2\sqrt[]{1421}+58=2\left(\sqrt[]{1421}+29\right)\left(cm\right)\)

31 tháng 10 2021

Câu 3: 

c: Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

18 tháng 9 2021

\(a,BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\left(pytago\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot CH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=5,4\left(cm\right)\\CH=\dfrac{AC^2}{BC}=9,6\left(cm\right)\\AH=\sqrt{5,4\cdot9,6}=51,84\left(cm\right)\end{matrix}\right.\)

\(b,\sin B=\cos C=\dfrac{AC}{BC}=\dfrac{4}{5}\\ \cos B=\sin C=\dfrac{AB}{BC}=\dfrac{3}{5}\\ \tan B=\cot C=\dfrac{AC}{AB}=\dfrac{4}{3}\\ \cot B=\tan C=\dfrac{AB}{AC}=\dfrac{3}{4}\)

5 tháng 10 2023

Bạn tự vẽ hình nhé.

\(\Delta ABC\) vuông tại \(A:AC=AB\cdot cotC=6\cdot cot30^o=6\sqrt{3}\)

Và: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Rightarrow AH=\sqrt{\dfrac{AB^2\cdot AC^2}{AB^2+AC^2}}=\sqrt{\dfrac{6^2\cdot\left(6\sqrt{3}\right)^2}{6^2+\left(6\sqrt{3}\right)^2}}=3\sqrt{3}\)

Vậy: \(AH=3\sqrt{3}.\)