K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

b: BA=BH

EA=EH

=>BE là trung trực của AH

c: AE=EH

EH<EC

=>AE<EC

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

=>ΔABM=ΔACM

b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

28 tháng 5 2023

GT

ΔABC vuông tại A, BD là phân giác.

DE vuông góc BC tại E

AB giao DE=F

KLBD là trung trực của AE

 

`\text {GT |  Cho đoạn thẳng BC, I là trung điểm của BC. Trên trung trực của BC lấy A (A} \ne \text {I)}`

`\text {KL |} \Delta AIB = \Delta AIC}`

a: Xét ΔOAH vuông tại A và ΔOBH vuông tại B có 

OH chung

\(\widehat{AOH}=\widehat{BOH}\)

Do đó: ΔOAH=ΔOBH

Suy ra: OA=OB; AH=BH

b: Xét ΔBHE vuông tại B và ΔAHM vuông tại A có 

HB=HA

\(\widehat{BHE}=\widehat{AHM}\)

Do đó: ΔBHE=ΔAHM

Suy ra: HE=HM

c: Ta có: OM=OE

nên O nằm trên đường trung trực của ME(1)

Ta có: HE=HM

nên H nằm trên đường trung trực của ME(2)

Từ (1) và (2) suy ra OH là đường trung trực của ME

17 tháng 7 2019

Ta có:

\(\sqrt{3x+4}=\sqrt{5x+4}\)

=> 3x + 4 = 5x + 4

=> 3x - 5x = 4 - 4

=> -2x = 0

=> x = 0

20 tháng 12 2021

a: Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

19 tháng 12 2021

a: Xét tứ giác EFBC có

A là trung điểm của EB

A là trung điểm của CF

Do đó: EFBC là hình bình hành

Suy ra: EF=BC

16 tháng 12 2021

1. Xét tam giác ABD và tam giác AED có:

\(\text{+}\)  AD chung.

\(\text{+}\) \(\widehat{BAD}=\widehat{EAD}\) (AD là phân giác).

\(\text{+}\) AB = AE (gt).

\(\Rightarrow\) Tam giác ABD = Tam giác AED (c - g - c).

2. a) Tam giác ABD = Tam giác AED (cmt).

\(\Rightarrow\) \(\widehat{ABD}=\widehat{AED}\) (2 góc tương ứng).

Mà \(\widehat{ABD}+\widehat{KBD}=\)\(180^o.\)

      \(\widehat{AED}+\widehat{CED}=\)\(180^o.\)

\(\Rightarrow\) \(\widehat{KBD}=\widehat{CED} (đpcm).\)

b) Xét tam giác KBD và tam giác CED có:

\(\text{+}\) \(\widehat{KBD}=\widehat{CED} \) (cmt).

\(\text{+}\) BD = ED (Tam giác ABD = Tam giác AED).

\(\text{+}\) \(\widehat{BDK}=\widehat{EDC}\) (2 góc đối đỉnh).

\(\Rightarrow\) Tam giác KBD = Tam giác CED (g - c - g).

3. Ta có: KE = KD + DE; CB = CD + DB.

Mà KD = CD (Tam giác KBD = Tam giác CED).

      DE = DB (Tam giác ABD = Tam giác AED).

\(\Rightarrow\) KE = CB.

Xét tam giác KBE và tam giác CEB có:

\(\text{+}\) KE = CB (cmt).

\(\text{+}\) BK = EC (Tam giác KBD = Tam giác CED).

\(\text{+}\) BE chung.

\(\Rightarrow\) Tam giác KBE = Tam giác CEB (c - c - c).

4. Ta có: DE \(\perp\) AC (gt). => Tam giác AED vuông tại E.

Mà tam giác ABD = tam giác AED (cmt).

\(\Rightarrow\) Tam giác ABD vuông tại B.

\(\Rightarrow\) \(\widehat{ABD}\) \(=90^o.\)

\(\Rightarrow\) Tam giác ABC vuông tại B.

Vậy để DE \(\perp\) AC thì tam giác ABC vuông tại B.