K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

b: Xét ΔAHD vuông tại H và ΔAKE vuông tại K có

AD=AE

\(\widehat{HAD}=\widehat{KAE}\)

Do đó: ΔAHD=ΔAKE

Suy ra: HD=EK

c: Xét ΔABC có

AH/AB=AK/AC

nên HK//BC

20 tháng 1 2022

bạn ơi

20 tháng 1 2022

câu hỏi

a: Xét ΔBAK và ΔBDK có

BA=BD

\(\widehat{ABK}=\widehat{DBK}\)

BK chung

Do đó: ΔBAK=ΔBDK

b: Ta có: ΔBAK=ΔBDK

nên KA=KD

mà BA=BD

nên BK là đường trung trực của AD

29 tháng 5 2022

A B C D O K

a)Xét \(\Delta BAK\) và \(\Delta BDK\) có:

    AB=BD

    \(\widehat{ABK}=\widehat{DBK}\)

   BK chung 

=>  \(\Delta BAK\) = \(\Delta BDK\) (c-g-c)

b)Gọi O là giao điểm của AD và BK

Xét \(\Delta ABO\) và \(\Delta DBO\) có :

    BO chung 

   \(\widehat{ABO}=\widehat{DBO}\)

   AB=DB

=>  \(\Delta ABO\) và \(\Delta DBO\)  (c-g-c)

=> AO=BO (1) ; \(\widehat{AOB}=\widehat{DOB}\)

Có : \(\widehat{AOB}+\widehat{DOB}=180^o\) mà \(\widehat{AOB}=\widehat{DOB}\)

=> ​​\(\widehat{AOB}=\widehat{DOB}=\dfrac{180^o}{2}=90^o\) (2)

Từ (1)(2) => BK là đường trung trực cùa AD

 

7 tháng 2 2020

Kẻ: ID⊥AB,IE⊥BC,IF⊥ACID⊥AB,IE⊥BC,IF⊥AC

Xét hai tam giác vuông IDB và IEB, ta có:

\(\eqalign{

& \widehat {I{\rm{D}}B} = \widehat {IEB} = 90^\circ \cr

& \widehat {DBI} = \widehat {EBI}\left( {gt} \right) \cr} \)

BI cạnh huyền chung

⇒⇒ ∆IDB = ∆IEB (cạnh huyền, góc nhọn)

Suy ra: ID = IE (hai cạnh tương ứng)

Quảng cáo

Xét hai tam giác vuông IEC và IFC, ta có ;

\(\eqalign{

& \widehat {IEC} = \widehat {IFC} = 90^\circ \cr

& \widehat {ECI} = \widehat {FCI}\left( {gt} \right) \cr} \)

CI canh huyền chung

Suy ra:  ∆ IEC = ∆IFC (cạnh huyền, góc nhọn)

Suy ra: IE = IF (hai cạnh tương ứng)           (2)

Từ (1) và (2) suy ra: ID = IF

Xét hai tam giác vuông IDA và IFA, ta có:

            ˆIDA=ˆIFA=90∘IDA^=IFA^=90∘

            ID = IF (chứng minh trên)

            AI cạnh huyền chung

Suy ra: ∆IDA = ∆IFA (cạnh huyền, cạnh góc vuông)

Suy ra: ˆDAI=ˆFAIDAI^=FAI^ (hai góc tương ứng)

Vậy AI là tia phân giác của ˆA

7 tháng 2 2020

Kẻ: ID⊥AB,IE⊥BC,IF⊥ACID⊥AB,IE⊥BC,IF⊥AC

Xét hai tam giác vuông IDB và IEB, ta có:

ˆIDB=ˆIEB=90∘ˆDBI=ˆEBI(gt)IDB^=IEB^=90∘DBI^=EBI^(gt)

BI cạnh huyền chung

⇒⇒ ∆IDB = ∆IEB (cạnh huyền, góc nhọn)

Suy ra: ID = IE (hai cạnh tương ứng)       (1)

Xét hai tam giác vuông IEC và IFC, ta có ;

ˆIEC=ˆIFC=90∘ˆECI=ˆFCI(gt)IEC^=IFC^=90∘ECI^=FCI^(gt)

CI canh huyền chung

Suy ra:  ∆ IEC = ∆IFC (cạnh huyền, góc nhọn)

Suy ra: IE = IF (hai cạnh tương ứng)           (2)

Từ (1) và (2) suy ra: ID = IF

Xét hai tam giác vuông IDA và IFA, ta có:

            ˆIDA=ˆIFA=90∘IDA^=IFA^=90∘

            ID = IF (chứng minh trên)

            AI cạnh huyền chung

Suy ra: ∆IDA = ∆IFA (cạnh huyền, cạnh góc vuông)

Suy ra: ˆDAI=ˆFAIDAI^=FAI^ (hai góc tương ứng)

Vậy AI là tia phân giác của ˆA



Read more: https://sachbaitap.com/cau-100-trang-151-sach-bai-tap-sbt-toan-lop-7-tap-1-c7a10140.html#ixzz6DFwdbF2W

Chứng minh gì vậy bạn?

=)) Mik chịu á, bạn cứ làm mấy chỗ khác trước và chừa chứng minh cho mik cx đc ạ 

 

Xét ΔDEF có DE<DF<EF

mà \(\widehat{F};\widehat{E};\widehat{D}\) lần lượt là góc đối diện của các cạnh DE,DF,EF

nên \(\widehat{F}< \widehat{E}< \widehat{D}\)

loading...