K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a)

1. Khởi động phần mềm đã cài đặt hoặc truy cập vào trang web: https://www.geogebra.org để sử dụng phiên bản online

2. Nhập phương trình bậc hai theo cú pháp y=-x^2+4x-3 vào vùng nhập lệnh như hình bên

Ta có ngay parabol trên vùng làm việc như hình dưới:

 

b)

1. Khởi động phần mềm đã cài đặt hoặc truy cập vào trang web: https://www.geogebra.org để sử dụng phiên bản online

2. Nhập phương trình bậc hai theo cú pháp y=x^2+2 vào vùng nhập lệnh như hình bên

Ta có ngay parabol trên vùng làm việc như hình dưới:

 

c)

1. Khởi động phần mềm đã cài đặt hoặc truy cập vào trang web: https://www.geogebra.org để sử dụng phiên bản online

2. Nhập phương trình bậc hai theo cú pháp y=1/2x^2+x+1 vào vùng nhập lệnh như hình bên

Ta có ngay parabol trên vùng làm việc như hình dưới:

 

d)

1. Khởi động phần mềm đã cài đặt hoặc truy cập vào trang web: https://www.geogebra.org để sử dụng phiên bản online

2. Nhập phương trình bậc hai theo cú pháp y=x^2-4x+4 vào vùng nhập lệnh như hình bên

Ta có ngay parabol trên vùng làm việc như hình dưới:

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Đồ thị hàm số có đỉnh \(I\left( {2; - 7} \right)\)

Trục đối xứng là x=2

Giao điểm của parabol với trục tung là (0;-3)

Điểm đối xứng với điểm (0;-3) qua trục đối xứng x=2 là (4;-3)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

b) Đồ thị hàm số có đỉnh \(I\left( { - 1;0} \right)\)

Trục đối xứng là x=-1

Giao điểm của parabol với trục tung là (0;1)

Giao điểm của parabol với trục hoành là (-1;0)

Điểm đối xứng với điểm (0;1) qua trục đối xứng x=-1 là (-2;1)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

c) Đồ thị hàm số có đỉnh \(I\left( {0; - 2} \right)\)

Trục đối xứng là x=0

Giao điểm của parabol với trục tung là (0;-2)

Cho x=1=>y=-3

=> Điểm A(1;-3) thuộc đồ thị.

Điểm đối xứng với A qua trục đối xứng x=0 là điểm B(-1;-3).

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

24 tháng 9 2023

Tham khảo:

a)

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = {x^2} - 4x + 3\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.1}} = 2;{y_S} = {2^2} - 4.2 + 3 =  - 1.\)

+ Có trục đối xứng là đường thẳng \(x = 2\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay lên trên vì \(a = 1 > 0\)

+ Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3).

Ta vẽ được đồ thị như hình dưới.

b)

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y =  - {x^2} - 4x + 5\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.( - 1)}} =  - 2;{y_S} =  - {( - 2)^2} - 4.( - 2) + 5 = 9.\)

+ Có trục đối xứng là đường thẳng \(x =  - 2\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay xuống dưới vì \(a =  - 1 < 0\)

+ Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5).

Ta vẽ được đồ thị như hình dưới.

c) Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = {x^2} - 4x + 5\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.1}} = 2;{y_S} = {2^2} - 4.2 + 5 = 1.\)

+ Có trục đối xứng là đường thẳng \(x = 2\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay lên trên vì \(a = 1 > 0\)

+ Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5).

Ta vẽ được đồ thị như hình dưới.

d)

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y =  - {x^2} - 2x - 1\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 2)}}{{2.( - 1)}} =  - 1;{y_S} =  - {( - 1)^2} - 2.( - 1) - 1 = 0\)

+ Có trục đối xứng là đường thẳng \(x =  - 1\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay xuống dưới vì \(a =  - 1 < 0\)

+ Cắt trục tung tại điểm có tung độ bằng -1, tức là đồ thị đi qua gốc tọa độ (0; -1).

Ta vẽ được đồ thị như hình dưới.

17 tháng 5 2017

Hàm số bậc hai

Hàm số bậc hai

Hàm số bậc hai

Hàm số bậc hai

Hàm số bậc hai

24 tháng 9 2023

Tham khảo:

a)

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = 2{x^2} + 4x - 1\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 4}}{{2.2}} =  - 1;{y_S} = 2.{( - 1)^2} + 4.( - 1) - 1 =  - 3.\)

+ Có trục đối xứng là đường thẳng \(x =  - 1\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

 

+ Bề lõm quay lên trên vì \(a = 2 > 0\)

+ Cắt trục tung tại điểm có tung độ bằng -1, tức là đồ thị đi qua điểm có tọa độ (0; -1).

Ta vẽ được đồ thị như hình dưới.

b) 

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y =  - {x^2} + 2x + 3\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 2}}{{2.( - 1)}} = 1;{y_S} =  - {1^2} + 2.1 + 3 = 4.\)

+ Có trục đối xứng là đường thẳng \(x = 1\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay xuống dưới vì \(a =  - 1 < 0\)

+ Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3).

Ta vẽ được đồ thị như hình dưới.

c)

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y =  - 3{x^2} + 6x\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 6}}{{2.( - 3)}} = 1;{y_S} =  - {3.1^2} + 6.1 = 3\)

+ Có trục đối xứng là đường thẳng \(x = 1\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay xuống dưới vì \(a =  - 3 < 0\)

+ Cắt trục tung tại điểm có tung độ bằng 0, tức là đồ thị đi qua gốc tọa độ (0; 0).

Ta vẽ được đồ thị như hình dưới.

d)

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = 2{x^2} - 5\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 0}}{{2.2}} = 0;{y_S} = {2.0^2} - 5 =  - 5.\)

+ Có trục đối xứng là đường thẳng \(x = 0\) (trùng với trục Oy);

+ Bề lõm quay lên trên vì \(a = 2 > 0\)

+ Cắt trục tung tại điểm có tung độ bằng -5, tức là đồ thị đi qua điểm có tọa độ (0; -5).

Ta vẽ được đồ thị như hình dưới.

13 tháng 4 2017

a) Bảng biến thiên:

Đồ thị: - Đỉnh:

- Trục đối xứng:

- Giao điểm với trục tung A(0; 1)

- Giao điểm với trục hoành , C(1; 0).

(hình dưới).

b) y = - 3x2 + 2x – 1=

Bảng biến thiên:

Vẽ đồ thị: - Đỉnh Trục đối xứng: .

- Giao điểm với trục tung A(0;- 1).

- Giao điểm với trục hoành: không có.

Ta xác định thêm mấy điểm: B(1;- 2), C(1;- 6). (bạn tự vẽ).

c) y = 4x2 - 4x + 1 = .

Lập bảng biến thiên và vẽ tương tự câu a, b.

d) y = - x2 + 4x – 4 = - (x – 2)2

Bảng biến thiên:

Cách vẽ đồ thị:

Ngoài cách vẽ như câu a, b, ta có thể vẽ như sau:

+ Vẽ đồ thị (P) của hàm số y = - x2.

+ Tịnh tiến (P) song song với Ox sang phải 2 đơn vị được (P1) là đồ thị cần vẽ. (hình dưới).

e) y = 2x2+ x + 1;

- Đỉnh I \(\left(\dfrac{-1}{4};\dfrac{-7}{8}\right)\)

- Trục đối xứng :\(x=\dfrac{-1}{4}\)

- Giao Ox: Đồ thị không giao với trục hoành

- Giao Oy: Giao với trục tung tại điểm (0;1)

Bảng biến thiên:

Vẽ đồ thị theo bảng sau:

x -2 -1 0 1 2
y 7 2 1 4 11

f) y = - x2 + x - 1.

- Đỉnh I \(\left(\dfrac{1}{2};\dfrac{-3}{4}\right)\)

- Trục đối xứng : \(x=\dfrac{1}{2}\)

- Giao Ox: Đồ thị không giao với trục hoành

- Giao Oy: Giao với trục tung tại điểm (0;-1)

Bảng biến thiên:

Vẽ đồ thị theo bảng sau:

x -2 -1 0 1 2
y -7 -3 -1 -1 -3