Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2015}\right)\)
A = \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2014}{2015}\)
A = \(\frac{1}{2015}\)
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\cdot...\cdot\left(1-\frac{1}{2015}\right)=\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{2014}{2015}=\frac{1\cdot2\cdot3\cdot...\cdot2014}{2\cdot3\cdot...\cdot2014\cdot2015}=\frac{1}{2015}\)
a) 20,8 x 45 + 0,37 x 15 + 20,8 x 55 x 0,63
= 20,8 x ( 45 + 55 x 0,63 ) + 0,37 x 15
= 20,8 x ( 45 + 34,65 ) + 5,55
= 20,8 x 79,65 + 5,55
= 1656,72 + 5,55
= 1662,27
b) ( 2013 x 2014 + 2014 x 2015 + 2015 x 2016 ) x ( 1 + 1/3 - 1 và 1/3 )
= ( 2013 x 2014 + 2014 x 2015 + 2015 x 2016 ) x [( 1 - 1 ) + ( 1/3 - 1/3 ) ]
= ( 2013 x 2014 + 2014 x 2015 + 2015 x 2016 ) x 0
= 0
1/1 x 2 + 1/2 x 3 + 1/3 x 4 + ... + 1/999 x 1000 + 1
= 1/1 - 1/1000 + 1
= 999/1000 + 1
= 1999/1000
Chuc ban may man
\(a)\) \(S=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(S=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(3S=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\)
\(3S-S=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\right)\)
\(2S=3+\frac{1}{3^7}\)
\(2S=\frac{3^8+1}{3^7}\)
\(S=\frac{3^8+1}{3^7}.\frac{1}{2}\)
\(S=\frac{3^8+1}{2.3^7}\)
Vậy \(S=\frac{3^8+1}{2.3^7}\)
Chúc bạn học tốt ~
=1/2 x 2/3 x 3/4 x 4/5 x 5/6 x.....x2013/2014 - 2014/2015
=1/2014 - 2014/2015
=1/2015