Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác \(OAB\sim\) tam giác \(OA'B'\):
\(\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}=\dfrac{OI}{A'B'}\) ( do OI = A'B' ) (1)
Xét tam giác \(OIF'\sim\) tam giác \(A'B'F'\)
\(\dfrac{OI}{A'B'}=\dfrac{OF'}{A'F'}\) (2)
\(\left(1\right);\left(2\right)\Rightarrow\dfrac{OA}{OA'}=\dfrac{OF'}{A'F'}\)
\(\Leftrightarrow\dfrac{OA}{OA'}=\dfrac{OF'}{OA'-OF'}\)
\(\Leftrightarrow\dfrac{30}{OA'}=\dfrac{10}{OA'-10}\)
\(\Leftrightarrow OA'=15\left(cm\right)\)
Thay \(OA'=15\) vào (1) \(\Rightarrow\dfrac{30}{15}=\dfrac{2}{A'B'}\)
\(\Leftrightarrow A'B'=1\left(cm\right)\)
b. Khi vật dịch chuyển rất xa thấu kính thì cho ảnh thật cách thấu kính bằng tiêu cự là 10 cm
Khoảng cách từ ảnh đến thấu kính là:
Áp dụng công thức tính thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow d'=\dfrac{d.f}{d-f}=\dfrac{8.4}{8-4}=8\left(cm\right)\)
Chiều cao của ảnh:
Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Rightarrow h'=\dfrac{d'.h}{d}=\dfrac{8.2}{8}=2\left(cm\right)\)
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{10}=\dfrac{1}{30}+\dfrac{1}{d'}\)
\(\Rightarrow d'=15cm\)
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{12}=\dfrac{1}{30}+\dfrac{1}{d'}\Rightarrow d'=20cm\)
Chiều cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{6}{h'}=\dfrac{30}{20}\Rightarrow h'=4cm\)
a,vì d>f(3cm>2cm) nên vật cho ảnh thật ngược chiều và lớn hơn vật
b,ta có 1/f=1/d+1/d'<=>1/2=1/3+1/d'<=>d'=6cm(f là tiêu cự,d và d' lần lượt là khoảng cách từ vật và ảnh tới thấu kính)=> khoảng cách từ ảnh tới thấu kính tới thấu kính là 6cm
đổi 1m=100cm ta có h/h'=d/d'<=>100/h'=3/6<=>h'=200cm(h và h' lần lượt là chiều cao của vật AB và chiều cao của ảnh A'B')
Vậy độ lớn của ảnh là 200cm