Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí tổng ba góc trong tam giác ABC , ta tính được góc BCA = 1800 - 900 -400 = 500
Tam giác MBK = tam giác MAC ( c.g.c)
b) Tam giác AMK = tam giác BMC (c.g.c)
=> góc AKM = goác BCM mà chúng có vị trí là 2 góc so le trong
=> AK // BC
Đây là bài hướng dẫn ,bạn thắc mắc chỗ nào hãy hỏi lại mình!!!
Hình tự kẻ nhé
a) Ta có: góc FAB + góc BAC = 90 độ
góc EAC + góc BAC = 90 độ
=> Góc FAB = góc EAC
AF=AC; AB=AE
=> Tam giác AFB = tam giác ACE
=> FB=EC
b) Lấy K sao cho M là trung điểm của AK thì ta có ACKB là hình bình hành nên góc ACB =180* - góc BAC. Ta cũng tính dc góc FAE= 180* - góc BAC ( tổng của BAC với 2 lần góc CAE, mà góc CAE=90* -góc BAC). Thêm với AC=AF , CK=AE (=AB) nên tam giác ACK = tam giác FAE nên AK=EF mà AK=2AM nên EF=2AM
c) Gọi H là giao của AM và EF. Tam giác ACK = tam giác FAE nên góc CAK = góc AFE, mà góc CAK phụ với góc MAF nên góc AFE cũng phụ góc MAF. Xét trong tam giác AHF có góc F và góc A phụ nhau nên tam giác AHF vuông tại H suy ra AM vuông góc với EF.
tự kẻ hình :
a, xét tam giác CAD và tam giác EAD có : AD chung
góc CAD = góc EAD do AD là phân giác của góc A (Gt)
góc DCA = góc DEA = 90 do ...
=> tam giác CAD = tam giác EAD (ch - gn)
b, xét tam giác KDC và tam giác BDE có : góc KDC = góc BDE (đối đỉnh)
DC = DE do tam giác CAD = tam giác EAD (Câu a)
góc DCK = góc DEB = 90 do...
=> tam giác KDC = tam giác BDE (cgv - gnk)
=> DK = DB (đn)
c, cm theo th c - g - c
1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)