Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ dàng thấy chữ số tận cùng của các số 20042 ; 20032 ; 20022 ; 20012 lần lượt là 6 ; 9 ; 4 ; 1. Do đó số n có chữ số tận cùng là 8 nên n không phải là số chính phương.
Chú ý : Nhiều khi số đã cho có chữ số tận cùng là một trong các số 0 ; 1 ; 4 ; 5 ; 6 ; 9 nhưng vẫn không phải là số chính phương. Khi đó các bạn phải lưu ý thêm một chút nữa :
Nếu số chính phương chia hết cho số nguyên tố p thì phải chia hết cho p2.
a) S = 2.1 + 2.3 + 2.32 + ... + 2.32004
= 2.(1+3+32+...+32004)
= 2.\(\frac{3^{2005-1}}{2}\)
= 32005 - 1
b) Nhận thấy : 2005 = 4k + 1
Nên : 32005 = 34k + 1 = 34k.3 = ...1k . 3
Vì ...1k có tận cùng là 1 nên 32005 có tận cùng là 3
=> 32005 - 1 có tận cùng là 2
a) Ta có :
\(S=2\cdot1+2\cdot3+2\cdot3^2+...+2\cdot3^{2004}\)
=> \(S=2.\left(1+3+3^2+...+3^{2004}\right)\)
Đăt \(1+3+3^2+...+3^{2004}\)là A, ta có :
\(3A=3+3^2+3^3+...+3^{2005}\)
=> \(3A-A=3^{2005}-1\)
=> \(A=\frac{3^{2005}-1}{2}\)
Vậy \(A=\frac{3^{2005}-1}{2}\)
=> 2.A = 2 . \(\frac{3^{2005}-1}{2}\)=\(3^{2005}-1\)
b) Ta có : 32005 = (34)501 . 3
= 81501 . 3 = ...1 . 3 = ...3
32005 - 1 = ....3 - 1 = ....2
Vì chữ số tận cùng của S là 2 nên S ko phải là số chính phương.
Vì A : 25 , mà 25 = 52 là số chính phương => A là số chính phương
1)
987 = 9.102 + 8.101 + 7.100
2564 = 2.103 + 5.102 + 6.101 + 4.100
abcde = a.104 + b.103 + c.102 + d.101 + e.100
2)
a) n = 1 b ) n = 0
3)
a) 13 + 23 = 1 + 8 = 9 = 32
b) 13 + 23 + 33 = 1 + 8 + 27 = 36 = 62
c ) 13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102
a) 52+122
=25+144
=169
Mà: 132=169
=> Là số chính phương.
b) 82 là bình phương=> Là số chính phương.
hỏi gớm hè