K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

Phép thử T được xét là: "Từ hộp đã cho, lấy ngẫu nhiên một thẻ".

a) Không gian mẫu được mô tả bởi tập

Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

b) A = {1, 2, 3, 4, 5};

B = {7, 8, 9, 10};

C = {2, 4, 6, 8, 10}.



30 tháng 1 2019

a. Không gian mẫu gồm 10 phần tử:

Ω = {1, 2, 3, …, 10}

b. A, B, C "là các biến cố".

+ A: "Lấy được thẻ màu đỏ"

⇒ A = {1, 2, 3, 4, 5}

+ B: "Lấy được thẻ màu trắng"

⇒ B = {7, 8, 9, 10}

+ C: "Lấy được thẻ ghi số chắn".

⇒ C = {2, 4, 6, 8, 10}

5 tháng 7 2017

a.Không gian mẫu gồm 12 phần tử, được mô tả:

Ω = {(1, 2), (2; 1); (1, 3), (3; 1); (1, 4), (4; 1); (2, 3), (3; 2); (2, 4), (4; 2); (3, 4); ( 4, 3)}

Trong đó (i, j) là kết quả "lần đầu lấy trúng thẻ i và lần 2 lấy trúng thẻ j".

b.Xác định các biến cố sau:

A: "Tổng các số trên hai thẻ là số chẵn".

⇒ A = {(1, 3), (3; 1); (2, 4); (4; 2)}

B: "Tích các số trên hai thẻ là số chẵn."

⇒ B = {(1, 2), (2; 1); (1, 4), (4; 1); (2, 3), (3; 2); (2, 4),(4; 2); (3, 4); (4; 3)}

3 tháng 4 2017

Phép thử T được xét là: "Từ hộp đã cho, lấy ngẫu nhiên hai thẻ".

a) Đồng nhất mỗi thẻ với chữ số ghi trên thẻ đó, ta có: Mỗi một kết quả có thể có các phép thử là một tổ hợp chập 2 của 4 chữ số 1, 2, 3, 4. Do đó, số phần tử của không gian mẫu là C24 = 6, và không gian mẫu gồm các phần tử sau:

Ω = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}.

b) A = {(1, 3), (2, 4)}.

B = {(1, 2), (1, 4), (2, 3), (2, 4), (3, 4)} = Ω {(1, 3)}



18 tháng 5 2017

Kí hiệu A là biến cố : "Quả lấy ra mầu đỏ"

B là biến cố : "Quả lấy ra ghi số chẵn"

a) Không gian mẫu \(\Omega=\left\{1,2,...,10\right\}\)

\(A=\left\{1,2,3,4,5,6\right\}\)

Từ đó : \(P\left(A\right)=\dfrac{6}{10}=\dfrac{3}{5}\)

Tiếp theo, \(B=\left\{2;4;6;8;10\right\}\)\(A\cap B=\left\{2;4;6\right\}\)

Do đó : \(P\left(B\right)=\dfrac{5}{10}=\dfrac{1}{2};P\left(AB\right)=\dfrac{3}{10}\)

Ta thấy \(P\left(AB\right)=\dfrac{3}{10}=\dfrac{3}{5}.\dfrac{1}{2}=P\left(A\right)P\left(B\right)\)

Vậy A và B độc lập.

22 tháng 8 2023

Mô tả các biến cố như sau:

`A = {2, 4}` (Thẻ lấy ra lần thứ nhất ghi số chẵn)
`B = {2, 4}` (Thẻ lấy ra lần thứ hai ghi số chẵn)
`C = {2, 4}` (Tích các số ghi trên hai thẻ lấy ra là số chẵn)

$HaNa$

22 tháng 8 2023

a) Tập hợp mô tả biến cố AB:
`AB: { (1, 5), (2, 4), (3, 3) }`

P(AB) = số phần tử trong AB / số phần tử trong không gian mẫu
`P(AB) = 3 / (3 * 5) = 3/15 = 1/5`

b) Một biến cố khác rỗng và xung khắc với cả hai biến cố A và B là biến cố "Tổng các số ghi trên 2 thẻ lớn hơn 6".

$HaNa$

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Không gian mẫu là các tấm thẻ được đánh số nên nó gồm 15 phần tử, ký hiệu \(\Omega  = \left\{ {1;2;3;...;15} \right\}\)

b) A là biến cố “Số ghi trên tấm thẻ nhỏ hơn 7” nên \(A = \left\{ {1;2;3;4;5;6} \right\}\)

B là biến cố “Số ghi trên tấm thẻ là số nguyên tố” nên \(B = \left\{ {2;3;5;7;11;13} \right\}\)

\(A \cup B = \left\{ {1;2;3;4;5;6;7;11;13} \right\}\)

\(AB = \left\{ {2;3;5} \right\}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Lấy ngẫu nhiên đồng thời 2 thẻ trong tổng số 50 thẻ từ hộp có \({C}_{50}^2 = 1225\) cách.

a) Gọi \(C\) là biến cố “2 thẻ lấy ra là số chẵn”, \(D\) là biến cố “2 thẻ lấy ra là số lẻ”

\( \Rightarrow A = C \cup D\)

Lấy ngẫu nhiên đồng thời 2 thẻ trong tổng số 25 thẻ chẵn có \({C}_{25}^2 = 300\) cách

\( \Rightarrow n\left( C \right) = 300 \Rightarrow P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega \right)}} = \frac{{300}}{{1225}} = \frac{{12}}{{49}}\)

Lấy ngẫu nhiên đồng thời 2 thẻ trong tổng số 25 thẻ lẻ có \({C}_{25}^2 = 300\) cách

\( \Rightarrow n\left( D \right) = 300 \Rightarrow P\left( C \right) = \frac{{n\left( D \right)}}{{n\left( \Omega \right)}} = \frac{{300}}{{1225}} = \frac{{12}}{{49}}\)

Vì \(C\) và \(D\) là hai biến cố xung khắc nên \(P\left( A \right) = P\left( C \right) + P\left( D \right) = \frac{{12}}{{49}} + \frac{{12}}{{49}} = \frac{{24}}{{49}}\)

b) Gọi \(E\) là biến cố “1 thẻ chia hết cho 4, 1 thẻ là số lẻ”

\( \Rightarrow B = C \cup E\)

Lấy ngẫu nhiên 1 thẻ trong tổng số 12 thẻ chia hết cho 4 có \({C}_{12}^1 = 12\) cách

Lấy ngẫu nhiên 1 thẻ trong tổng số 25 thẻ lẻ có \({C}_{25}^1 = 25\) cách

\( \Rightarrow n\left( E \right) = 12.25 = 300 \Rightarrow P\left( E \right) = \frac{{n\left( E \right)}}{{n\left(\Omega \right)}} = \frac{{300}}{{1225}} = \frac{{12}}{{49}}\)

Vì \(C\) và \(E\) là hai biến cố xung khắc nên \(P\left( B \right) = P\left( C \right) + P\left( E \right) = \frac{{12}}{{49}} + \frac{{12}}{{49}} = \frac{{24}}{{49}}\)