Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BA=BC
DC=DA
=>BD là trung trực của AC
b: Xét ΔBAD và ΔBCD có
BA=BC
DA=DC
BD chung
=>ΔBAD=ΔBCD
=>góc BAD=góc BCD=(360-100-80)/2=90 độ
a: BA=BC
DC=DA
=>BD là trung trực của AC
b: Xét ΔABD và ΔCBD có
BA=BC
BD chung
DA=DC
=>ΔABD=ΔCBD
=>góc BAD=góc BCD=(360-100-80)/2=90 độ
a: Ta có: AB=BC
nên B nằm trên đường trung trực của AC(1)
Ta có: CD=CA
nên D nằm trên đường trung trực của AC(2)
Từ (1) và (2) suy ra BD là đường trung trực của AC
a) Ta có: BA=BC(gt)
nên B nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DA=DC(gt)
nên D nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của AC
b) Xét ΔBAD và ΔBCD có
BA=BC(gt)
BD chung
DA=DC(gt)
Do đó: ΔBAD=ΔBCD(c-c-c)
Suy ra: \(\widehat{BAD}=\widehat{BCD}\)(hai góc tương ứng)
mà \(\widehat{BAD}+\widehat{BCD}=190^0\)
nên \(\widehat{BAD}=\widehat{BCD}=\dfrac{190^0}{2}=95^0\)
Bài 1)
a) Vì A: B:C:D = 1:2:3:4
=> A= B/2 = C/3=D/4
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
A = 36 độ
B= 72 độ
C=108 độ
D= 144 độ
b) Ta có :
A + D = 36 + 144 = 180 độ(1)
B+C = 72 + 108 = 180 độ(2)
Từ (1) và (2) ta có:
=> AB //CD (dpcm)
c) Ta có :
CDE + ADC = 180 độ(kề bù)
=> CDE = 180 - 144 = 36
Ta có :
BCD + DCE = 180 độ ( kề bù)
=> DCE = 180 - 108 = 72
Xét ∆CDE ta có :
CDE + DCE + DEC = 180 ( tổng 3 góc trong ∆)
=> DEC = 180 - 72 - 36 = 72 độ
Bài 2)
a) Ta có ABCD có :
A + B + C + D = 360 độ
Mà C = 80 độ
D= 70 độ
=> A+ B = 360 - 80 - 70 = 210 độ
Ta có AI là pg góc A
BI là pg góc B
=> DAI = BAI = A/2
=> ABI = CBI = B/2
=> BAI + ABI = A + B /2
=> BAI + ABI = 210/2 = 105
Xét ∆IAB ta có :
IAB + ABI + AIB = 180 độ
=> AIB = 180 - 105
=> AIB = 75 độ
=>
a) ta thấy ab = ab ; bc = cd
=> tứ giác ABCD là hình bình hành
=> AC và BD cắt nhau tai trung điểm của mỗi đường
=> AC là đường trung trực của BD
b) Ta có A + D = 180
=> D = 180 - 100
=> D= 80
Ta lại có B + C = 180
=> C = 180 - 60
=> C = 120