Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét (O) có
\(\widehat{EFA}\) là góc nội tiếp chắn cung EA
\(\widehat{EBA}\) là góc nội tiếp chắn cung EA
Do đó: \(\widehat{EFA}=\widehat{EBA}\)(Hệ quả góc nội tiếp)
hay \(\widehat{MBE}=\widehat{MFA}\)
Xét ΔMBE và ΔMFA có
\(\widehat{MBE}=\widehat{MFA}\)(cmt)
\(\widehat{AMF}\) chung
Do đó: ΔMBE∼ΔMFA(g-g)
Suy ra: \(\dfrac{MB}{MF}=\dfrac{ME}{MA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(MA\cdot MB=ME\cdot MF\)(Đpcm)
a: góc MAO+góc MBO=90+90=180 độ
=>MAOB nội tiếp
ΔOCD cân tại O
mà OK là trung tuýen
nên OK vuông góc CD
Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB tại H
góc OHE+góc OKE=90+90=180 độ
=>OHEK nội tiếp
b: Xét ΔMAE và ΔMKA có
góc MAE=góc MKA
góc AME chung
=>ΔMAE đồng dạng với ΔMKA
=>MA/MK=ME/MA
=>MA^2=MK*ME=MC*MD
Xét đường tròn (O;R) có \(\widehat{MTA}\)là góc tạo bởi tiếp tuyến MT (tiếp điểm là T) và dây cung TA \(\Rightarrow\widehat{MTA}=\frac{1}{2}sđ\widebat{TA}\)
Mà \(\widehat{MBT}\)là góc nội tiếp chắn cung TA \(\Rightarrow\widehat{MBT}=\frac{1}{2}sđ\widebat{TA}\)
\(\Rightarrow\widehat{MTA}=\widehat{MBT}\left(=\frac{1}{2}sđ\widebat{TA}\right)\)
Xét \(\Delta MTA\)và \(\Delta MBT\), ta có: \(\widehat{BMT}\)chung; \(\widehat{MTA}=\widehat{MBT}\left(cmt\right)\)
\(\Rightarrow\Delta MTA~\Delta MBT\left(g.g\right)\)\(\Rightarrow\frac{MT}{MB}=\frac{MA}{MT}\Rightarrow MT^2=MA.MB\)(1)
Hoàn toàn tương tự, ta có \(MT^2=MC.MD\)(2)
Vì MT là tiếp tuyến tại T của (O) \(\Rightarrow MT\perp OT\)tại T \(\Rightarrow\Delta OMT\)vuông tại T
\(\Rightarrow OM^2=MT^2+OT^2\)\(\Rightarrow MT^2=OM^2-OT^2\)
Đồng thời MT là tiếp tuyến tại T của (O;R) \(\Rightarrow OT=R\)
Như vậy ta có \(MT^2=OM^2-R^2\)(3)
Từ (1), (2) và (3) ta có đpcm.
Xét $(O)$ có: $\widehat{MCA}=\widehat{CBA}$ (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung $CA$)
hay $\widehat{MCA}=\widehat{MBC}$
Xét $ΔMCA$ và $ΔMBC$ có:
$\widehat{MCA}=\widehat{MBC}$
$\widehat{M}$ chung
$⇒ΔMCA \backsim ΔMBC(g.g)$
\(\Rightarrow\dfrac{MC}{MB}=\dfrac{MA}{MC}\Rightarrow MC^2=MA.MB\)
b, Xét $(O)$ có: $MC$ là tiếp tuyến của đường tròn
\(\Rightarrow MC\perp OC\)
hay $ΔMCO$ vuông tại $C$
có: đường cao $MH$
nên $MC^2=MH.MO$ (hệ thức lượng trong tam giác vuông)
Mà $MC^2=MA.MB$ nên $MA.MB=MH.MO$
suy ra \(\Rightarrow\dfrac{MA}{MO}=\dfrac{MH}{MB}\)
$\widehat{M}$ chung
Nên $ΔMAH \backsim ΔMOB(c.g.c)$
nên $\widehat{MHA}=\widehat{MBO}$
hay $\widehat{MHA}=\widehat{ABO}$
suy ra tứ giác $AHOB$ nội tiếp (góc ngoài tại 1 đỉnh = góc trong đỉnh đối diện)
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
b: MAOB nội tiếp
=>góc MAB=góc MBA=góc MOA
Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA
=>MA^2=MD*MC
c: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB
OH*OM+MC*MD
=OA^2+MA^2=OM^2
d: MH*MO=MC*MD
=>MH/MD=MC/MO
=>ΔMHC đồng dạng với ΔMDO
=>góc OHC+góc ODC=180 độ
=>OHCD nội tiếp
khó quá mk ko bít sorry!!!
547568769
Xin lỗi bạn!
Mk mới học lớp 8 thôi ak!
Chúc bạn có câu trả lời sớm nha!
Kb nhá ^_^