K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác MBOC có \(\widehat{OBM}+\widehat{OCM}=90^0+90^0=180^0\)

nên MBOC là tứ giác nội tiếp

=>M,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

MB,MC là các tiếp tuyến

Do đó: MB=MC

=>M nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OM là đường trung trực của BC

=>OM\(\perp\)BC tại I và I là trung điểm của BC

Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

=>BC\(\perp\)CD tại C

Ta có: BC\(\perp\)CD

BC\(\perp\)OM

Do đó: CD//OM

c: Xét (O) có

ΔBHD nội tiếp

BD là đường kính

Do đó: ΔBHD vuông tại H

=>BH\(\perp\)HD tại H

=>BH\(\perp\)DM tại H

Xét ΔBDM vuông tại B có BH là đường cao

nên \(MH\cdot MD=MB^2\left(3\right)\)

Xét ΔMBO vuông tại B có BI là đường cao

nên \(MI\cdot MO=MB^2\left(4\right)\)

Từ (3) và (4) suy ra \(MH\cdot MD=MI\cdot MO\)

=>\(\dfrac{MH}{MO}=\dfrac{MI}{MD}\)

Xét ΔMHI và ΔMOD có

\(\dfrac{MH}{MO}=\dfrac{MI}{MD}\)

góc HMI chung

Do đó: ΔMHI đồng dạng với ΔMOD

=>\(\widehat{MIH}=\widehat{MDO}=\widehat{ODH}\)

mà \(\widehat{ODH}=\widehat{OHD}\)(ΔOHD cân tại O)

nên \(\widehat{MIH}=\widehat{OHD}\)

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

Xét đường thẳng (d) cổ định ở ngoài (0;R) (khoảng cách từ 0 đến (d) không nhỏ hơn R2). Từ một điểm M nằm trên đường thắng (d) ta dựng các tiếp tuyến MA, MB đến (O:R) ( A,B là các tiếp điểm) và dựng cát tuyên MCD (tia MC nằm giữa hai tia MO, MA và MC < MD). Gọi E là trung điểm của CD, H là giao điểm của AB và MO. a, Chứng minh: 5 điểm M,A,E,O,B cùng nằm trên một đường tròn. b, Chứng minh: MC.MD=...
Đọc tiếp

Xét đường thẳng (d) cổ định ở ngoài (0;R) (khoảng cách từ 0 đến (d) không nhỏ hơn R2). Từ một điểm M nằm trên đường thắng (d) ta dựng các tiếp tuyến MA, MB đến (O:R) ( A,B là các tiếp điểm) và dựng cát tuyên MCD (tia MC nằm giữa hai tia MO, MA và MC < MD). Gọi E là trung điểm của CD, H là giao điểm của AB và MO. a, Chứng minh: 5 điểm M,A,E,O,B cùng nằm trên một đường tròn. b, Chứng minh: MC.MD= MA² = MO² –R² . c. Chứng minh: Các tiếp tuyến tại C,D của đường tròn (O;R) cắt nhau tại một điểm nằm trên đường thắng AB. d. Chứng minh: Đường thắng AB luôn đi qua một điểm cố định. e, Chứng minh: Một đường thắng đi qua O vuông góc với MO cắt các tia MA, MB lần lượt tại PQ. Tìm GTNN của SMPO. Tìm vị trí điểm M để AB nhỏ nhất.

 

0