Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Các cặp phân số bằng nhau lập được từ đẳng thưc 3.4 = 6.2 là :
\(\frac{3}{6}=\frac{2}{4}\); \(\frac{6}{2}=\frac{4}{2}\); \(\frac{4}{6}=\frac{2}{3}\); \(\frac{3}{2}=\frac{6}{4}\)
Vậy ...
\(1.a.\frac{x}{7}=\frac{6}{21}=\frac{6:3}{21:3}=\frac{2}{7}\Rightarrow x=2\\ b.\frac{-5}{y}=\frac{20}{28}=\frac{20:\left(-4\right)}{28:\left(-4\right)}=\frac{-5}{-7}\Rightarrow y=-7\)
\(2.a.\frac{a}{-b}=\frac{a\left(-1\right)}{-b\left(-1\right)}=\frac{-\left(a.1\right)}{-\left[-\left(b.1\right)\right]}=\frac{-a}{b}\\ b.\frac{-a}{-b}=\frac{-a\left(-1\right)}{-b\left(-1\right)}=\frac{-\left[-\left(a.1\right)\right]}{-\left[-\left(b.1\right)\right]}=\frac{a}{b}\)
\(3.\frac{3}{-4}=\frac{-3}{4}\\ \frac{-5}{-7}=\frac{5}{7}\\ \frac{2}{-9}=\frac{-2}{9}\\ \frac{-11}{-10}=\frac{11}{10}\)
\(4.\frac{3}{6}=\frac{2}{4}\\ \frac{6}{3}=\frac{4}{2}\\ \frac{2}{3}=\frac{4}{6}\\ \frac{3}{2}=\frac{6}{4}\)
Bài 1:
a, \(\frac{x}{7}\)=\(\frac{6}{21}\)⇒x.21=6.7⇒x.21=42⇒x=2
b,\(\frac{-5}{y}=\frac{20}{28}\)⇒-5.28= 20.y⇒-140=20.y⇒y =-7
Bài 2:
a, \(\frac{a}{-b}\)= \(\frac{a.\left(-1\right)}{-b.\left(-1\right)}\)=\(\frac{-a}{b}\)
b, \(\frac{-a}{-b}=\frac{-a.\left(-1\right)}{-b.\left(-1\right)}=\frac{a}{b}\)
Bài 3:
1,\(\frac{3}{-4}=\frac{-3}{4}\)
2,\(\frac{-5}{-7}=\frac{5}{7}\)
3,\(\frac{2}{-9}=\frac{-2}{9}\)
4,\(\frac{-11}{-10}=\frac{11}{10}\)
Bài 4 :
\(\frac{3}{6}=\frac{2}{4}\) ;
\(\frac{6}{3}=\frac{4}{2}\);
\(\frac{3}{2}=\frac{6}{4}\);
\(\frac{2}{3}=\frac{4}{6}\).
a) \(\frac{a}{3b}\)= \(\frac{c}{3d}\)
Đặt \(\frac{a}{b}\)= \(\frac{c}{d}\)= k
=.> a = b.k, c = d.k
Từ đó ta có
+) \(\frac{a}{c-3b}\)= \(\frac{bk}{3k-3b}\)= \(\frac{bk}{b.\left(k-3\right)}\)= \(\frac{k}{k-3}\) (1)
+) \(\frac{c}{c-3d}\)= \(\frac{dk}{dk-3d}\)-= \(\frac{dk}{d.\left(k-3\right)}\)= \(\frac{k}{k-3}\) (2)
Từ (1) và (2) ta có
\(\frac{a}{a-3b}\) = \(\frac{c}{c-3d}\)
a) Gọi \(ƯCLN\left(15n+4;12n+3\right)\) là \(d\) .
\(\Leftrightarrow\left\{{}\begin{matrix}15n+4⋮d\\12n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4\left(15n+4\right)⋮d\\5\left(12n+3\right)⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}60n+16⋮d\\60n+15⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left(60n+16\right)-\left(60n+15\right)⋮d\)
\(\Leftrightarrow60n+16-60n-15⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
Vậy phân số \(\dfrac{15n+4}{12n+3}\) là phân số tối giản với \(n\in N\).
b) Từ đẳng thức \(\left(-5\right).9=3.\left(-10\right)\) ta lập được các cặp phân số bằng nhau:
\(\dfrac{-5}{3}=\dfrac{-10}{9}\)
\(\dfrac{-5}{-10}=\dfrac{3}{9}\)
\(\dfrac{9}{3}=\dfrac{-10}{-5}\)
\(\dfrac{9}{-10}=\dfrac{3}{-5}\)
\(a,\frac{5}{3}=\frac{15}{-9}=\frac{-5}{3};b,\frac{-7}{14}=\frac{-2}{4}=\frac{-1}{2};c,\frac{15}{10}=\frac{-9}{-6}=\frac{3}{2};d,\frac{6}{12}=\frac{10}{20}=\frac{1}{2}\)
Đáp án là C
Từ đẳng thức 3.4 = 2.6 , ta có thể lập được các cặp phân số bằng nhau là: