K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 3 2023

Gọi chữ số hàng đơn vị là a

TH1: \(a=0\Rightarrow\) 3 chữ số còn lại có \(A_6^3\) cách chọn và hoán vị

TH2: \(a=5\)

\(\Rightarrow\) Chữ số hàng nghìn có 5 cách chọn (khác 5 và 0), 2 chữ số còn lại có \(A_5^2\) cách

\(\Rightarrow A_6^3+5.A_5^2\) số

\(\overline{abcd}\)

TH1: d=0

=>CÓ 6*5*4=120 cách

TH2: d=5

=>Có 5*5*4=100 cách

=>Có 120+100=220 cách

30 tháng 3 2023

Có 5 cách chọn chữ số hàng trục nghìn
Có 5 cách chọn chữ số hàng nghìn
Có 5 cách chọn chữ số hàng trăm
Có 5 cách chọn chữ số hàng trục
Có 5 cách chọn chữ số hàng đơn vị
=> Có thể  lập được bao nhiêu số tự nhiên có 5 chữ số từ các số đã cho là:
5.5.5.5.5 = 3125 ( số )

 

TH1: f=0

=>Có 8*7*6*5*4=6720 cách

TH2: f=5

=>Có 7*7*6*5*4=5880 cách

=>Có 6720+5880=12600 cách

23 tháng 8 2021

Số tự nhiên đó có dạng \(\overline{abcde}\)

a, a có 5 cách chọn.

b có 5 cách chọn.

c có 4 cách chọn.

d có 3 cách chọn.

e có 2 cách chọn.

\(\Rightarrow\) Có \(5.5.4.3.2=600\) số thỏa mãn.

b, TH1: \(e=0\)

a có 5 cách chọn.

b có 4 cách chọn.

c có 3 cách chọn.

d có 2 cách chọn.

\(\Rightarrow\) Có \(5.4.3.2=120\) số thỏa mãn.

TH2: \(e\ne0\)

a có 5 cách chọn.

e có 2 cách chọn.

b có 4 cách chọn.

c có 3 cách chọn.

d có 2 cách chọn.

\(\Rightarrow\) Có \(5.4.3.2.2=240\) số thỏa mãn.

Vậy có \(120+240=360\) số tự nhiên thỏa mãn yêu cầu bài toán.

c, TH1: \(e=0\Rightarrow\) có 120 số thỏa mãn.

TH2: \(e=5\)

a có 4 cách chọn.

b có 4 cách chọn.

c có 3 cách chọn.

d có 2 cách chọn.

\(\Rightarrow\) Có \(4.4.3.2=96\) số thỏa mãn.

Vậy có \(120+96=216\) số tự nhiên thỏa mãn yêu cầu bài toán.

28 tháng 3 2022

45 

26 tháng 1 2022

a) 

Gọi abcde là 5 chữ số khác nhau cần tìm

a-9cc

b \ {a} - 8cc

...

e \ {a,b,c,d} - 5cc

<=> 9*8*7*6*5=9P5=15120 số

b)

e {2,4,6,8} - 4cc

a \ {e} - 8cc

b \ {a,e} - 7cc

c \ {a,b,e} - 6cc

d \ {a,b,c,e} - 5cc

<=> 4 * 8P4 = 6720 số

 

NV
27 tháng 1 2022

a.

Có \(A_9^5=15120\) cách

b.

Gọi số đó là \(\overline{abcde}\) \(\Rightarrow e\) chẵn \(\Rightarrow e\) có 4 cách chọn

Bộ abcd có \(A_8^4=1680\) cách 

tổng cộng: \(4.1680=...\) cách

NV
30 tháng 3 2023

Gọi chữ số hàng đơn vị là a 

- TH1: \(a=0\)

Chọn 4 vị trí còn lại và hoán vị chúng: \(A_8^4\) cách

- TH2: \(a=5\)

Chữ số hàng chục ngàn có 7 cách chọn (khác 5 và 0), 3 chữ số còn lại có \(A_7^3\) cách chọn và hoán vị \(\Rightarrow7.A_7^3\) số

Tổng cộng: \(A_8^4+7.A_7^3\) số

30 tháng 3 2023

Dạ em cảm ơn rất nhiều ạ 

20 tháng 10 2019

Đáp án A

Gọi số cần tìm là . Số mà chia hết cho thì phải chia hết cho 3 và 5.

Trường hợp 1. Số cần tìm có dạng , để chia hết cho thì a, b, c, d  phải thuộc các tập sau

Do đó trong trường hợp này có số.