K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2023

Các chữ số từ 1 đến 9 có tổng cộng 9 chữ số. Để số có ba chữ số chia hết cho 3, tổng của các chữ số đó cũng phải chia hết cho 3.

Có hai trường hợp để tìm số thỏa mãn:

Trường hợp tổng ba số là 9: Có thể lập ra các số sau: 369, 639, 693, 963.

Trường hợp tổng ba số là 18: Có thể lập ra các số sau: 189, 279, 369, 459, 549, 639, 729, 819, 918.

Vậy có tổng cộng 9 số tự nhiên có 3 chữ số phân biệt và chia hết cho 3.

NV
18 tháng 3 2023

Chia các chữ số từ 1 đến 9 làm 3 tập \(A=\left\{3;6;9\right\}\) ; \(B=\left\{1;4;7\right\}\) ; \(C=\left\{2;5;8\right\}\)

Số có 3 chữ số chia hết cho 3 khi:

TH1: 3 chữ số của nó thuộc cùng 1 tập \(\Rightarrow3.3!=18\) số

TH2: 3 chữ số của nó thuộc 3 tập phân biệt:

Chọn ra mỗi tập một chữ số có \(3.3.3=27\) cách

Hoán vị 3 chữ số có: \(3!=6\) cách

\(\Rightarrow27.6=162\) số

Như vậy có tổng cộng \(18+162=180\) số thỏa mãn

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Việc lập số tự nhiên gồm ba chữ số chia hết cho 5 là thực hiện 3 hành động liên tiếp: chọn chữ số hàng đơn vị, chọn chữ số hàng chục, chọn chữ số hàng trăm.

chọn chữ số hàng đơn vị: Có 1 cách chọn (số 5).

chọn chữ số hàng chục: Có 6 cách chọn.

chọn chữ số hàng trăm: Có 6 cách chọn.

Theo quy tắc nhân, số số tự nhiên lập được là: 1.6.6=36 (số).

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Các số tự nhiên nhỏ hơn 1000 gồm các số có 1 chữ số, có 2 chữ số hoặc 3 chữ số.

+ Số có 1 chữ số chia hết cho 5 là: 0 và 5 => có 2 số.

+ Số có 2 chữ số chia hết cho 5:

Hàng đơn vị là 0: chữ số hàng chục có 9 cách chọn.

Hàng đơn vị là 5: chữ số hàng chục có 8 cách chọn (khác 0).

=> Có \(9 + 8 = 17\) (số)

+ Số có 3 chữ số chia hết cho 5:

Hàng đơn vị là 0: chữ số hàng trăm có 9 cách chọn, hàng chục có 8 cách chọn.

Hàng đơn vị là 5: chữ số hàng trăm có 8 cách chọn, hàng chục có 8 cách chọn.

=> Có 9.8+8.8 = 136 (số)

Vậy có tất cả \(2 + 17 + 136 = 155\) số thỏa mãn ycbt.

\(\overline{abcde}\)

TH1: e=0

e có 1 cách chọn

Chữ số 2 có 4 cách chọn

ba chỗ còn lại có 4*3*2=24 cách

=>Có 4*24=96 cách

TH2: e=5; a=2

a,e có 1 cach

b có 4 cách

c có 3 cách

dcó 2 cách

=>Có 4*3*2=24 cách

TH3: e=5; a<>2

e có 1 cách chọn

a có 3 cách chon

số 2 có 3 cách

hai số còn lại có 3*2=6 cách

=>Có 3*3*6=54 cách

=>CÓ 96+24+54=174 số

Chia A thành 3 tập hợp:

B={1;4;7}; C={2;5;8}; D={0;3;6}

TH1: 2 số trong B, 2 số trong C

=>Có \(C^2_3\cdot C^2_3\cdot4!=216\left(cách\right)\)

TH2: 1 số trong B, 1 số trong C, số 0 và 1 số trong D

=>Có 3*3*1*2*3*3*2*1=324 cách

TH3: 1 số trong B, 1 số trong C, 2 số khác 0 trong D

=>Có 3*3*1*4!=216 cách

TH4: 3 số trong B, số 0

=>Có 3*3*2*1=18 cách

TH5: 3 số trong B, 1 số khác 0 trong D

=>Có 2*4!=24*2=48 cách

TH6: 3 số trong C, số 0

=>Có 3*3*2*1=18 cách

TH7: 3 số trong C, 1 số khác 0 trong D

=>Có 2*4!=48 cách

=>Có 216+324+216+18+48+18+48=888 cách

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a)     Số có ba chữ số khác nhau có thể lập được là: 6.5.4 = 120 (số)

b)    Số chia hết cho 3 nên tổng 3 chữ số chia hết cho 3, có các cặp số là: (1,2,3), (1,2,6), (2,3,4), (3,4,5), (4,5,6), (1,5,6), (1,3,5), (2,4,6).

Số có ba chữ số khác nhau và chia hết cho 3 có thể lập được là:

       8. 3! = 48 (số)

NV
11 tháng 3 2023

Số số khác nhau có 3 chữ số: \(4.4.3=48\)

Chỉ có một bộ duy nhất có tổng chia hết cho 9 là 1;8;9, hoán vị 3 chữ số này có 3!=6 cách

Vậy có \(48-6=42\) số

a: \(\overline{abcd}\)

a có 7 cách chọn

b có 6 cách

c có 5 cách

d có 4 cách

=>Có 7*6*5*4=840 cách

b: Bộ ba chia hết cho 9 sẽ có thể là (1;2;6); (1;3;5); (2;3;4)

Mỗi bộ có 3!=6(cách)

=>Có 6*3=18 cách

c: \(\overline{abcde}\)

e có 3 cách

a có 6 cách

b có 5 cách

c có 4 cách

d có 3 cách

=>Có 3*6*5*4*3=1080 cách