K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\overline{abcd}\)

a có 7 cách chọn

b có 6 cách

c có 5 cách

d có 4 cách

=>Có 7*6*5*4=840 cách

b: Bộ ba chia hết cho 9 sẽ có thể là (1;2;6); (1;3;5); (2;3;4)

Mỗi bộ có 3!=6(cách)

=>Có 6*3=18 cách

c: \(\overline{abcde}\)

e có 3 cách

a có 6 cách

b có 5 cách

c có 4 cách

d có 3 cách

=>Có 3*6*5*4*3=1080 cách

\(\overline{abcde}\)

TH1: e=0

e có 1 cách chọn

Chữ số 2 có 4 cách chọn

ba chỗ còn lại có 4*3*2=24 cách

=>Có 4*24=96 cách

TH2: e=5; a=2

a,e có 1 cach

b có 4 cách

c có 3 cách

dcó 2 cách

=>Có 4*3*2=24 cách

TH3: e=5; a<>2

e có 1 cách chọn

a có 3 cách chon

số 2 có 3 cách

hai số còn lại có 3*2=6 cách

=>Có 3*3*6=54 cách

=>CÓ 96+24+54=174 số

NV
18 tháng 3 2023

TH1: chữ số hàng đơn vị là 4, khi đó hàng chục là 5

Chọn 2 chữ số còn lại và xếp vào 2 vị trí đầu có \(A_7^2=42\) cách

TH2: chữ số hàng đơn vị khác 4 \(\Rightarrow\) có 3 cách chọn từ 2, 6, 8

Chọn chữ số còn lại có 6 cách

Hoán vị chữ số đó và cặp 45: \(2!.2!=4\) cách

\(\Rightarrow3.6.4=72\) số

Tổng: \(42+72=114\) số

15 tháng 5 2023

 Gọi \(X=\left\{1,2,3,4,5,6,7\right\}\)

 Số các số có 4 chữ số khác nhau được lập từ các chữ số thuộc X là \(A^4_7=840\) 

 Ta tính số các số mà có 2 chữ số lẻ cạnh nhau.

 TH1: Số đó chỉ có 2 chữ số lẻ: Có \(3.A^2_4.A^2_3=216\) (số)

 TH2: Số đó có 3 chữ số lẻ: Có \(4.A^3_4.3=288\) (số)

 TH3: Cả 4 chữ số đều lẻ: Có \(4!=24\) (số)

Vậy có \(216+288+24=528\) số có 2 chữ số lẻ cạnh nhau. Suy ra có \(840-528=312\) số không có 2 chữ số liên tiếp nào cùng lẻ.

18 tháng 4 2023

Bạn có thể gthich rõ giúp mình vs đc kh ạ

Cảm ơn bạn nhiều

14 tháng 12 2023

TH1: Hàng đơn vị là 0

=> Số cách chọn chữ số hàng chục nghìn, nghìn, trăm, chục: 8 x 7 x 6 x 5 = 1680 (cách)

TH2: Hàng đơn vị là 5

=> Số cách chọn chữ số hàng chục nghìn, nghìn, trăm, chục: 7 x 7 x 6 x 5 = 1470 (cách)

Số lượng số tự nhiên có 5 chữ số được lập bởi các số 0,1,2,3,4,5,6,7,8 và chia hết cho 5 là: 1680 + 1470 = 3150 (số)

Đáp số: 3150 số thoả mãn

TH1: 2 chẵn 2 lẻ

=>Có \(C^2_5\cdot C^2_4\cdot2=120\left(cách\right)\)

TH2: 3 lẻ, 1 chẵn

=>Có \(C^3_5\cdot4\cdot4!=960\left(cách\right)\)

TH3: 4 lẻ

=>Có \(C^4_5\cdot4!=120\left(cách\right)\)

=>Có 120+960+120=1200 cách