Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là A.
Gọi số cần lập có dạng: a 1 a 2 a 3 a 4 a 5 ¯
• Chọn 2 số lẻ thuộc nhóm 1 ; 3 ; 5 ; 7 ⇒ C 4 2
• Chọn 3 số chẳn trong nhóm 0 ; 2 ; 4 ; 6 ⇒ C 4 3
• Hoán vị 2 nhóm trên có 5! cách
* Các số có số a 1 = 0
• Chọn 2 số lẻ thuộc nhóm 1 ; 3 ; 5 ; 7 ⇒ C 4 2
• Chọn 2 số chẳn trong nhóm 0 ; 2 ; 4 ; 6 ⇒ C 3 2
• Hoán vị 2 nhóm trên có 4! cách
Vậy các số cần tìm: C 4 2 . C 4 3 .5 ! − C 4 2 . C 3 2 .4 ! = 2448 số
Gọi số cần lập là A = a 1 a 2 a 3 a 4 a 5 với 1 ≤ a 1 ≤ 2 .
+ Trường hợp 1: a 1 = 1.
Có 4 cách chọn a 5 và A 5 3 cách chọn các chữ số còn lại nên có 4 . A 5 3 số.
+ Trường hợp 2: a 1 = 2; a 2 lẻ.
Có 2 cách chọn a 2 , 3 cách chọn a 5 và A 4 2 cách chọn các chữ số còn lại nên có 2 . 3 . A 4 2 = 72 số.
+ Trường hợp 3: a 1 = 2; a 2 chẵn.
Có 2 cách chọn a 2 , 2 cách chọn a 3 và A 4 2 cách chọn các chữ số còn lại nên có 2 . 2 . A 4 2 = 48 số.
Vậy có 240 + 72 + 48 = 360 số
Đáp án A
Đáp án C
Trước tiên ta đếm số các số lẻ có bốn chữ số đôi một khác nhau lập được từ các số đã cho: có 3 cách chọn chữ số hàng đơn vị, có 4 cách chọn chữ số hàng nghìn, có A 4 2 = 6 . 2 cách chọn hai chữ số hàng trăm và hàng chục. Như vậy có 3.4.6.2=144 số như trên.
Tiếp theo ta đếm số các số lẻ có bốn chữ số đôi một khác nhau và không có mặt chữ số 1: Tương tự trường hợp trên, ta được số các số thuộc loại này là: 2.3.3=18.
Vậy số các số tự nhiên lẻ có bốn chữ số đôi một khác nhau mà phải có mặt số 1 là: 144 - 18 = 126
Đáp án C
Gọi số tự nhiên cần lập có dạng a b c ¯ a , b , c ∈ 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; a ≠ 0
Bài toán không yêu cầu số tự nhiên có 3 chữ số khác nhau.
Chọn c = {0;2;4;6} có 4 cách chọn, chọn a ≠ 0 có 6 cách chọn và chọn b có 7 cách chọn.
Theo quy tắc nhân có: 4.6.7 = 168 số.
Gọi số tự nhiên có 4 chữ số khác nhau đôi một được chọn từ các chữ số 0; 1; 2; 3;4;5;6 là a b c d .
a có 6 cách chọn; các số còn lại có A 6 3 cách chọn. Suy ra số phần tử của S là 6 . A 6 3 = 720
Do đó n Ω = 720
Gọi A là biến cố: “số được chọn là số chẵn đồng thời chữ số hàng đơn vị bằng tổng các chữ số hàng chục, trăm và nghìn”.
Số được chọn thỏa mãn yêu cầu đề bài nếu
d ∈ 0 ; 2 ; 4 ; 6 d = a + b + c ⇒ d ∈ 4 ; 6 d = a + b + c .
* Trường hợp 1: Số có dạng a b c 4 với a + b + c = 4 suy ra tập { a;b;c } là { 0;1;3 }. Vì a,b,c đôi một khác nhau nên có 2 cách chọn a; 2 cách chọn b; 1 cách chọn c. Do đó số các số thuộc dạng này là 2 . 2 . 1 = 4
* Trường hợp 2: Số có dạng a b c 6 với a + b + c = 6 suy ra tập { a;b;c } có thể là một trong các tập { 0;1;5 }; { 0;2;4 }; { 1;2;3 }
+ Nếu { a;b;c } là tập { 0;1;5 } hoặc { 0;2;4 } thì mỗi trường hợp có 4 số (tương tự trường hợp trên)
+ Nếu { a;b;c } là tập { 1;2;3 } thì có P 3 = 3! = 6 số.
Do đó số các số thuộc dạng này là 4 + 4 + 6 = 14
Qua hai trường hợp trên, ta suy ra n(A): = 14 + 4 = 18.
Vậy xác suất cần tìm là
P A = n A n Ω = 18 720 = 1 40
Đáp án C
Chọn C
Gọi số cần tìm là a = a 1 a 2 a 3 a 4 a 5 ¯ a i ≠ 0 Do a ⋮ 3 nên a 1 + a 2 + a 3 + a 4 + a 5 ⋮ 3
Nếu a 1 + a 2 + a 3 + a 4 ⋮ thì a 5 = 0 hoặc a 5 = 3
Nếu a 1 + a 2 + a 3 + a 4 chia 3 dư 1 thì a 5 = 2 hoặc a 5 = 5 .
Nếu a 1 + a 2 + a 3 + a 4 chia 3 dư 2 thì a 5 = 1 hoặc a 5 = 4 .
Như vậy, từ một số có 4 chữ số a 1 a 2 a 3 a 4 (các số được lấy từ tập A) sẽ tạo được 2 số tự nhiên có 5 chữ số thỏa mãn yêu cầu bài toán.
Dễ thấy từ các chữ số của tập A có thể lập được 5.6.6.6 = 1080 số tự nhiên có 4 chữ số.
Do đó từ các chữ số của tập A sẽ lập được 2.1080 = 2160 số chia hết cho 3 có 5 chữ số.
Phương pháp:
Dùng công thức cộng và nhân.
Cách giải:
Số số lập thành thỏa mãn điều kiện đề bài là: 312.2 = 624.
Chọn: D