K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2016

Do trong phòng có 100 người, mỗi người quen it nhất 67 người còn lại nên số người mà người đó không quen nhiều nhất là:

                        100-67-1= 32( người)

Ta giả sử 1 người bất kỳ trong 100 người đó là A. Nếu ta loại những người mà A không quen ra khỏi phòng thì trong phòng sẽ còn ít nhất 68 người( trong đó có A).

Ta lại giả sử 1 trong 68 người còn lại trong phòng( khác A) là B. Nếu ta loại đi những người mà B không quen ra khỏi phòng thì trong phòng sẽ còn ít nhất 68-32=36( người) trong đó có A và B.

............................. 36......................................(khác A,B) là C.............................................C................................................

.....................................36-32=4( người) trong đó có A,B và C.

Trong 4 người còn lại ta giả sử người khác A,B,C là D thì khi đó trong phòng có 4 người: A,B,C và D suy ra A,B,C,D đôi một quen nhau. Do đó tìm được 4 người mà 2 người bất kì trong số đó đều quen nhau( đpcm)

2 tháng 11 2016

Xét A là 1 người bất kỳ trong phòng

\(\Rightarrow\)A quen ít nhất người
Nếu ta mời những người không quen A ra ngoài thì số người ra nhiều nhất là
Trong phòng còn lại người. \(\Rightarrow\)gọi là 1 người quen \(\Rightarrow\) có nhiều nhất người B không quen trong phòng
\(\Rightarrow\) số nguời còn lại là \(\Rightarrow\)gọi là 1 người quen \(\Rightarrow\) không quen nhiều nhất người trong phòng
\(\Rightarrow\)trong phòng còn lại 4 người \(\Rightarrow\)ngoài A,B,C còn 1 người giả sử là D,khi đó A,B,C,D đôi 1 quen nhau(đpcm)

26 tháng 9 2022

Chọn A là một học sinh trong hội nghị mời vào bàn. A có 50 người quen.

Chọn B và C là hai bạn không quen nhau trong nhóm này.

Nếu không thể chọn được B và C thì tất cả 50 người trong nhóm quen A đều quen nhau. Khi đó có thể lấy ba bạn bất kỳ xếp vào bàn với A, thỏa mãn điều kiện bài toán.

Trường hợp chọn được B và C, khi đó hội nghị có A, B quen A, C quen A ngồi ở bàn và 97 người khác. B còn 49 người quen khác A, C còn 49 người quen khác A, tổng cộng là 98>97. Như vậy B và C ít nhất có 1 người quen chung. Chọn D là một trong số người quen chung của B và C mời vào bàn. Ta có A,B,D,C thỏa mãn điều kiện bài toán.

12 tháng 4 2022

bạn tham khảo nha.

undefined

1. Cho sáu số nguyên dương đôi một khác nhau và đều nhỏ hơn 10. Chứng minh rằng luôn tìm được ba số trong đó có một số bằng tổng hai số còn lại.2. Cho một bảng ô vuông kích thước 5× 5. Người ta viết vào mỗi ô của bảng một trong các số -1, 0, 1; sau đó tính tổng của các số theo từng cột, theo từng dòng và theo từng đường chéo. Chứng minh rằng trong tất cả  các tổng đó luôn tồn tại...
Đọc tiếp

1. Cho sáu số nguyên dương đôi một khác nhau và đều nhỏ hơn 10. Chứng minh rằng luôn tìm được ba số trong đó có một số bằng tổng hai số còn 
lại.
2. Cho một bảng ô vuông kích thước 5× 5. Người ta viết vào mỗi ô của bảng một trong các số -1, 0, 1; sau đó tính tổng của các số theo từng cột, theo từng dòng và theo từng đường chéo. Chứng minh rằng trong tất cả  các tổng đó luôn tồn tại hai tổng có giá trị bằng nhau.
3. Có 20 người quyết định đi bơi thuyền bằng 10 chiếc thuyền đôi. Biết rằng nếu 2 người A và B mà không quen nhau thì tổng số những người quen của A và những người quen của B không nhỏ hơn 19. Chứng minh rằng có thể phân công vào các thuyền đôi sao cho mỗi thuyền đều là hai người quen nhau

❤️❤️❤️

1
18 tháng 4 2020

mình không biết

AH
Akai Haruma
Giáo viên
28 tháng 6 2021

Lời giải:

Số người quen của 1 người có thể chạy từ $0$ đến $n-1$ người.

Tuy nhiên, nếu 1 người quen 0 người thì sẽ không có ai trong số những người còn lại quen $n-1$ người và ngược lại, nếu 1 người quen $n-1$ người thì sẽ không có ai trong số những người còn lại quen $0$ người.

Tức là, Số người quen của 1 người trong nhóm $n$ người đó có thể chạy từ $0$ đến $n-2$, hoặc từ $1$ đến $n-1$

Coi đây như những chiếc lồng thỏ, thì có $n-1$ lồng.

Có $n$ người.

Theo nguyên lý Dirichlet, tồn tại $[\frac{n}{n-1}]+1=2$ người có số người quen giống nhau.

Ta có đpcm.