Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là tâm hình bình hành
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BO}=\overrightarrow{OD}=\frac{1}{2}\overrightarrow{BD}\\\overrightarrow{OG}=\frac{1}{3}OD\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BG}=\frac{2}{3}\overrightarrow{BD}\)
Gọi \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BG}=\left(-4;-\frac{28}{3}\right)\\\overrightarrow{BD}=\left(x-4;y-5\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-4=\frac{3}{2}\left(-4\right)\\y-5=\frac{3}{2}.\left(-\frac{28}{3}\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-9\end{matrix}\right.\) \(\Rightarrow D\left(-2;-9\right)\)
Gọi O là tâm hình bình hành
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BO}=\frac{1}{2}\overrightarrow{BD}\\\overrightarrow{BG}=\frac{2}{3}\overrightarrow{BO}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BG}=\frac{1}{3}\overrightarrow{BD}\) \(\Rightarrow\overrightarrow{BD}=3\overrightarrow{BG}\)
Ta có \(\overrightarrow{BG}=\left(-4;-\frac{28}{3}\right)\)
Gọi \(D\left(x;y\right)\Rightarrow\overrightarrow{BD}=\left(x-4;y-5\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x-4=3.\left(-4\right)\\y-5=3.\left(-\frac{28}{3}\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-8\\y=-23\end{matrix}\right.\)
\(\Rightarrow D\left(-8;-23\right)\)
Chọn A.
Gọi tọa độ điểm C( x ; y)
Vì O là trọng tâm tam giác ABC nên
G là trọng tâm tam giác ABC
\(\Rightarrow\left\{{}\begin{matrix}3=\dfrac{x_A-1+x_C}{3}\\1=\dfrac{y_A+0+y_C}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_A+x_C=10\\y_A+y_C=3\end{matrix}\right.\)
Gọi I là giao điểm của AC và BD.
ABCD là hình bình hành
\(\Rightarrow\) I là trung điểm của AC, I là trung điểm của BD.
I là trung điểm của AC \(\Rightarrow I\left(5;\dfrac{3}{2}\right)\).
I là trung điểm của BD
\(\Rightarrow\left\{{}\begin{matrix}5=\dfrac{-1+x_D}{2}\\\dfrac{3}{2}=\dfrac{0+y_D}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_D=11\\y_D=3\end{matrix}\right.\)
\(\Rightarrow D\left(11;3\right)\).
ủa thế rồi không cần phải tính tọa độ A và C hả, lúc tôi đang nháp thì thấy cần phải tính nhưng quá nhiều biến nên là tôi đã giậm chầm tại đây
Gọi C(x, y)
Vì G là trọng tâm tam giác ABC nên :
6 + − 3 + x 3 = − 1 1 + 5 + y 3 = 1 ⇔ x = − 6 y = − 3 .
Đáp án C
a)
Ta có: \(\overrightarrow {AB} = \left( {2 - 1;4 - 3} \right) = \left( {1;1} \right),\;\overrightarrow {AC} = \left( { - 3 - 1;2 - 3} \right) = \left( { - 4; - 1} \right)\)
Hai vectơ này không cùng phương (vì \(\frac{1}{{ - 4}} \ne \frac{1}{{ - 1}}\)).
Do đó các điểm A, B, C không cùng nằm trên một đường thẳng.
Vậy A, B, C là ba đỉnh của một tam giác.
b) Trung điểm M của đoạn thẳng AB có tọa độ là \(\left( {\frac{{1 + 2}}{2};\frac{{3 + 4}}{2}} \right) = \left( {\frac{3}{2};\frac{7}{2}} \right)\)
c) Trọng tâm G của tam giác ABC có tọa độ là \(\left( {\frac{{1 + 2 + \left( { - 3} \right)}}{3};\frac{{3 + 4 + 2}}{3}} \right) = \left( {0;3} \right)\)
d) Để O(0; 0) là trọng tâm của tam giác ABD thì \(\left( {0;0} \right) = \left( {\frac{{{x_A} + {x_B} + {x_D}}}{3};\frac{{{y_A} + {y_B} + {y_D}}}{3}} \right)\)
\( \Leftrightarrow \left( {0;0} \right) = \left( {\frac{{1 + 2 + x}}{3};\frac{{3 + 4 + y}}{3}} \right)\)
\(\begin{array}{l} \Leftrightarrow \left( {0;0} \right) = \left( {1 + 2 + x;3 + 4 + y} \right)\\ \Leftrightarrow \left( {0;0} \right) = \left( {x + 3;y + 7} \right)\\ \Leftrightarrow \left\{ \begin{array}{l}0 = x + 3\\0 = y + 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 3\\y = - 7\end{array} \right.\end{array}\)
Vậy tọa độ điểm D là (-3; -7).
\(\overrightarrow{GB}=\left(4;\dfrac{28}{3}\right)\)
Gọi \(D\left(x;y\right)\) \(\Rightarrow\overrightarrow{DG}=\left(-x;-\dfrac{13}{3}-y\right)\)
Gọi O là tâm hbh \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{DG}=\dfrac{2}{3}\overrightarrow{DO}\\\overrightarrow{DO}=\overrightarrow{OB}\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{DG}=\dfrac{1}{3}\overrightarrow{DB}=\dfrac{1}{2}\overrightarrow{GB}\)
\(\Rightarrow\left\{{}\begin{matrix}-x=\dfrac{1}{2}.4\\-\dfrac{13}{3}-y=\dfrac{1}{2}.\dfrac{28}{3}\end{matrix}\right.\) \(\Rightarrow D\left(-2;-9\right)\)
bạn ơi đáp án của nó là D(-2;-9). bạn giúp mk giải vs