K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2015

a) Trục Ox là đường thẳng y = 0

Để d // Ox <=> m - 1 = 0 và n \(\ne\) 0

<=> m = 1 và n \(\ne\) 0

b) d có hệ số góc = 3 => m - 1 = 3 <=> m = 4

=> d có dạng y = 3x + n

A (1; -1) \(\in\) d => yA = 3 xA + n <=> - 1 = 3.1 + n  <=> n = -4

Vậy d có dạng y = 3x - 4

24 tháng 11 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}m-1=0\\y=n\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\y=n\end{matrix}\right.\\ b,\Leftrightarrow\left\{{}\begin{matrix}m-1=-3\\m-1+n=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-2\\n=2\end{matrix}\right.\\ \Leftrightarrow\left(d\right):y=-3x+2\)

26 tháng 4 2019

1)

trục Ox là đt' y=0   

để d//với Ox làm bình thường

a=a'<=>m-1=0<=>m=1

và b=b'<=>-n khác 0<=>n khác 0

Vậy  m=1 và n khác 0 là giá trị cần tìm

2)

phương trình đường thẳng d :y=(m-1)x-n

do d đi qua A(1;-1) va có hệ số góc =-3 nên ta có a=-3;x=1;y=-1

thay vào hàm số d ta được -1=-3.1-n   <=>n=-2

vậy hàm số có dạng y=-3x-2

26 tháng 4 2019

1 . Để đường thẳng (d) song song với trục Ox thì :

\(\left\{{}\begin{matrix}m-1=0\\n\in R\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=1\\n\in R\end{matrix}\right.\)

2 . Đường thẳng (d) đi qua điểm \(A\left(1;-1\right)\) nên ta có :

\(-1=\left(m-1\right)+n\Leftrightarrow m+n=0\)

Đường thẳng (d) có tung độ gốc bằng -3 \(\Rightarrow n=-3\) nên \(m=3\)

Vậy đường thẳng (d) có dạng : \(y=2x-3\)

18 tháng 11 2019

thanks nha

a: Đường thẳng Ox có phương trình tổng quát là:

0x+y+0=0

=>y=0x+0

Để Ox//(d) thì m-1=0 và n<>0

=>m=1 và n<>0

b: Vì hệ số góc là -3 nên m-1=-3

hay m=-2

Vậy: (d): y=-3x+n

Thay x=1 và y=-1 vào (d), ta được:

n-3=-1

hay n=2

19 tháng 5 2022

a) Trục Ox là đường thẳng y = 0

Để d // Ox <=> m - 1 = 0 và n ≠≠ 0

<=> m = 1 và n ≠≠ 0

b) d có hệ số góc = 3 => m - 1 = 3 <=> m = 4

=> d có dạng y = 3x + n

A (1; -1) ∈∈ d => yA = 3 xA + n <=> - 1 = 3.1 + n  <=> n = -4

Vậy d có dạng y = 3x - 4

a) Gọi (d): y=ax+b

Vì (d)//y=2x-3 nên \(\left\{{}\begin{matrix}a=2\\b\ne-3\end{matrix}\right.\)

Vậy: (d): y=2x+b

Vì (d) đi qua điểm C(-1;4) nên 

Thay x=-1 và y=4 vào (d), ta được:

\(2\cdot\left(-1\right)+b=4\)

hay b=6

Vậy: (d): y=2x+6

Thay y=0 vào (d), ta được:

2x+6=0

hay x=-3

Vậy: A(-3;0)

b) Vì y=ax+b đi qua hai điểm B(4;0) và C(-1;4) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}4a+b=0\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-4\\b=a+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{5}\\b=\dfrac{-4}{5}+4=\dfrac{-4}{5}+\dfrac{20}{5}=\dfrac{16}{5}\end{matrix}\right.\)

6 tháng 7 2021

Tính góc tạo bởi đường thẳng BC và trục hoành Ox đi

a) Gọi (d): y=ax+b

Vì (d)//y=2x-3 nên ta có: \(\left\{{}\begin{matrix}a=2\\b\ne-3\end{matrix}\right.\)

=> (d): y=2x+b

Thay x=-1 và y=4 vào (d), ta được:

\(2\cdot\left(-1\right)+b=4\)

\(\Leftrightarrow b=6\)

Vậy: (D): y=2x+6

Thay y=0 vào (d),ta được:

\(2x+6=0\)

\(\Leftrightarrow x=-3\)

Vậy: A(-3;0)

b) Vì đồ thị hàm số y=ax+b đi qua hai điểm B(4;0) và C(-1;4) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}4a+b=0\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-4\\-a+b=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{5}\\b=4+a=4+\dfrac{-4}{5}=4-\dfrac{4}{5}=\dfrac{16}{5}\end{matrix}\right.\)

Vậy: \(a=-\dfrac{4}{5}\)\(b=\dfrac{16}{5}\)

c) Độ dài đoạn thẳng AB là:

\(AB=\sqrt{\left(-3-4\right)^2+\left(0-0\right)^2}=7\)(cm)

Độ dài đoạn thẳng AC là:

\(AC=\sqrt{\left(-3+1\right)^2+\left(0-4\right)^2}=2\sqrt{5}\left(cm\right)\)

Độ dài đoạn thẳng BC là:

\(BC=\sqrt{\left(4+1\right)^2+\left(0-4\right)^2}=\sqrt{41}\left(cm\right)\)

Chu vi tam giác ABC là:

\(C_{ABC}=AB+AC+BC\)

\(=7+2\sqrt{5}+\sqrt{41}\)

\(\simeq17,9\left(cm\right)\)

5 tháng 7 2021

Còn thiếu tính góc tạo bởi đường thẳng BC và trục Ox mà bạn

8 tháng 4 2021

Theo Cô si       4x+\frac{1}{4x}\ge2  , đẳng thức xảy ra khi và chỉ khi   4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}). Do đó

                                         A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016

                                        A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014

                                        A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014

Hơn nữa    A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.  \Leftrightarrow x=\dfrac{1}{4} .

Vậy  GTNN  =  2014