K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2018

Từ giả thiết suy ra  u → = 1 2 ; − 5 , v → = k ; − 4 .

Để u → ⊥ v → ⇔ u → . v → = 0 ⇔ 1 2 k + − 5 − 4 = 0 ⇔ k = − 40 .

 Chọn C.

5 tháng 5 2017

Từ giả thiết suy ra  u → = 1 2 ; − 5 , v → = k ; − 4 .

Yêu cầu bài toán: u → ⊥ v → ⇔ 1 2 k + − 5 − 4 = 0 ⇔ k = − 40 .

Chọn C.

30 tháng 9 2017

Chọn A.

Từ giả thiết suy ra  và 

Suy ra 

Để hai vecto trên vuông góc với nhau khi và chỉ khi:

2k – 40 = 0 hay k = 20

3 tháng 2 2019

Ta có  a → = m . u → + v → = 4 m + 1 ; m + 4 b → = i → + j → = 1 ; 1 .

Yêu cầu bài toán  ⇔ cos a → , b → = cos 45 0 = 2 2

⇔ 4 m + 1 .1 + m + 4 .1 2 4 m + 1 2 + m + 4 2 = 2 2 ⇔ 5 m + 1 2 17 m 2 + 16 m + 17 = 2 2

⇔ 5 m + 1 = 17 m 2 + 16 m + 17 ⇔ m + 1 ≥ 0 25 m 2 + 50 m + 25 = 17 m 2 + 16 m + 17 ⇔ m = − 1 4 .

Chọn C.

17 tháng 12 2023

a) Ta có:

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)

         \(=\overrightarrow{AB}+k\overrightarrow{BC}\)

         \(=\overrightarrow{AB}+k\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\)

         \(=\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\)

b) \(\overrightarrow{NP}=\overrightarrow{AP}-\overrightarrow{AN}\)

             \(=\dfrac{2}{3}\overrightarrow{AC}-\dfrac{3}{4}\overrightarrow{AB}\)

Để \(AM\perp NP\)

\(\Rightarrow\overrightarrow{AM}.\overrightarrow{NP}=\overrightarrow{0}\)

\(\Rightarrow\left[\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\right]\left(-\dfrac{3}{4}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\right)=\overrightarrow{0}\)

\(\Leftrightarrow\dfrac{3\left(k-1\right)}{4}AB^2+\dfrac{2k}{3}AC^2+\dfrac{2\left(1-k\right)}{3}\overrightarrow{AB}.\overrightarrow{AC}-\dfrac{3k}{4}\overrightarrow{AB}.\overrightarrow{AC}=\overrightarrow{0}\)

\(\Leftrightarrow\dfrac{3\left(k-1\right)}{4}AB^2+\dfrac{2k}{3}AB^2+\dfrac{1-k}{3}AB^2-\dfrac{3k}{8}AB^2=0\)

\(\Leftrightarrow AB^2\left[\dfrac{3\left(k-1\right)}{4}+\dfrac{2k}{3}+\dfrac{1-k}{3}-\dfrac{3k}{8}\right]=0\)

\(\Leftrightarrow18\left(k-1\right)+16k+8\left(1-k\right)-9k=0\left(AB>0\right)\)

\(\Leftrightarrow17k=10\)

\(\Leftrightarrow k=\dfrac{10}{17}\)

15 tháng 7 2018

Ta có a → = u → + m . v → = 4 + m ; 1 + 4 m .  

Trục hoành có vectơ đơn vị là  i → = 1 ; 0 .

Vectơ a →  vuông góc với trục hoành  ⇔ a → . i → = 0 ⇔ 4 + m = 0 ⇔ m = − 4.

 Chọn B.

24 tháng 9 2023

Tham khảo:

a) Ta có: \(\overrightarrow b  = \left( {4; - 1} \right)\) và \(\overrightarrow a  = 3.\overrightarrow i  - 2.\overrightarrow j \;\; \Rightarrow \;\overrightarrow a \;\left( {3; - 2} \right)\)

\( \Rightarrow 2\;\overrightarrow a  - \overrightarrow b  = \left( {2.3 - 4\;;\;2.\left( { - 2} \right) - \left( { - 1} \right)} \right) = \left( {2; - 3} \right)\)

Lại có: M (-3; 6), N(3; -3)

\( \Rightarrow \overrightarrow {MN}  = \left( {3 - \left( { - 3} \right); - 3 - 6} \right) = \left( {6; - 9} \right)\)

Dễ thấy:\(\left( {6; - 9} \right) = 3.\left( {2; - 3} \right)\) \( \Rightarrow \overrightarrow {MN}  = 3\left( {2\;\overrightarrow a  - \overrightarrow b } \right)\)

b) Ta có: \(\overrightarrow {OM}  = \left( { - 3;6} \right)\) ( do M(-3; 6)) và \(\overrightarrow {ON}  = \left( {3; - 3} \right)\) (do N (3; -3)).

Hai vectơ này không cùng phương (vì \(\frac{{ - 3}}{3} \ne \frac{6}{{ - 3}}\)).

Do đó các điểm O, M, N không cùng nằm trên một đường thẳng.

Vậy chúng không thẳng hàng.

c) Các điểm O, M, N không thẳng hàng nên OMNP là một hình hành khi và chỉ khi \(\overrightarrow {OM}  = \overrightarrow {PN} \).

Do \(\overrightarrow {OM}  = \left( { - 3;6} \right),\;\overrightarrow {PN}  = \left( {3 - x; - 3 - y} \right)\)  nên

\(\overrightarrow {OM}  = \overrightarrow {PN}  \Leftrightarrow \left\{ \begin{array}{l} - 3 = 3 - x\\6 =  - 3 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y =  - 9\end{array} \right.\)

Vậy điểm cần tìm là P (6; -9).