Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Điểm \(M\left( {1;2} \right)\) thuộc cả hai đường thẳng nói trên.
b) Ta có: \(\left\{ \begin{array}{l}x - 2y + 3 = 0\\3x - y - 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - 2y = - 3\\3x - y = 1\end{array} \right.\).
Sử dụng máy tính cầm tay, ta được \(\left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right.\)
c) Tọa độ giao điểm của \({\Delta _1},{\Delta _2}\) chính là nghiệm của hệ phương trình\(\left\{ \begin{array}{l}x - 2y + 3 = 0\\3x - y - 1 = 0\end{array} \right.\).
a) Chọn \(t = 0;t = 1\) ta lần được được 2 điểm A và B thuộc đường thẳng \(\Delta \) là: \(A\left( {1; - 2} \right),B\left( { - 1; - 1} \right)\)
b) +) Thay tọa độ điểm C vào phương trình đường thẳng \(\Delta \) ta có: \(\left\{ \begin{array}{l}1 = 1 - 2t\\ - 1 = - 2 + t\end{array} \right.\). Do hệ phương trình vô nghiệm nên C không thuộc đường thẳng \(\Delta \)
+) Thay tọa độ điểm D vào phương trình đường thẳng \(\Delta \) ta có: \(\left\{ \begin{array}{l}1 = 1 - 2t\\3 = - 2 + t\end{array} \right.\). Do hệ phương trình vô nghiệm nên D không thuộc đường thẳng \(\Delta \)
a) Góc \(\varphi \) và góc \(\left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right)\) có thể bằng nhau hoặc bù nhau.
b) Do góc \(\varphi \) và góc \(\left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right)\) có thể bằng nhau hoặc bù nhau nên \(\cos \varphi = \left| {\cos \left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right)} \right|\)
Ta có: \(\overrightarrow {{u_1}} = \left( {1; - 2} \right) \Rightarrow \overrightarrow {{n_1}} = \left( {2;1} \right)\) và \(\overrightarrow {{u_2}} = \left( {1;3} \right) \Rightarrow \overrightarrow {{n_2}} = \left( {3; - 1} \right)\).
Ta có \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {2.3 + 1.( - 1)} \right|}}{{\sqrt {{2^2} + {1^2}} .\sqrt {{3^2} + {{( - 1)}^2}} }} = \frac{{\sqrt 2 }}{2} \\ \Rightarrow \left( {{\Delta _1},{\Delta _2}} \right) = {45^o}\)
a) Ta có: \(\left| {\overrightarrow n .\overrightarrow {HM} } \right| = \left| {\overrightarrow n } \right|.\left| {\overrightarrow {HM} } \right|.\left| {\cos \left( {\overrightarrow n ,\overrightarrow {HM} } \right)} \right| = \sqrt {{a^2} + {b^2}} .HM.1 = \sqrt {{a^2} + {b^2}} .HM\)
b) Ta có : \(\overrightarrow n = \left( {{\rm{a }};{\rm{ b}}} \right)\left( {\overrightarrow n \ne 0} \right){\rm{ ,}}\overrightarrow {HM} = \left( {{x_1} - {x_o};{y_1} - {y_o}} \right) \Rightarrow \overrightarrow n .\overrightarrow {HM} = a\left( {{x_o} - {x_1}} \right) + b\left( {{y_o} - {y_1}} \right) = a{x_o} + b{y_o} + c\) trong đó \(a{x_1} + b{y_1} = c\).
c) Ta có: \(\left| {\overrightarrow n .\overrightarrow {HM} } \right| = \left| {\overrightarrow n } \right|.\left| {\overrightarrow {HM} } \right|.\left| {\cos \left( {\overrightarrow n ,\overrightarrow {HM} } \right)} \right| \Leftrightarrow \left| {a{x_o} + b{y_o} + c} \right| = \sqrt {{a^2} + {b^2}} .HM \Rightarrow HM = \frac{{\left| {a{x_o} + b{y_o} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)
a) Khoảng cách từ \(M(1;2)\) đến \(\Delta :3x - 4y + 12 = 0\) là:
\(d\left( {M,\Delta } \right) = \frac{{\left| {3.1 - 4.2 + 12} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \frac{7}{5}\)
b) \(\Delta \) có phương trình tham số \(\Delta :\left\{ \begin{array}{l}x = t\\y = - t\end{array} \right.\) nên có phương trình tổng quát là
\(\left( {x - 0} \right) + \left( {y - 0} \right) = 0 \Leftrightarrow x + y = 0\)
Suy ra khoảng cách từ điểm \(M(4;4)\) đến đường thẳng \(\Delta \) là
\(d\left( {M,\Delta } \right) = \frac{{\left| {1.4 + 1.4} \right|}}{{\sqrt {{1^2} + {1^2}} }} = 4\sqrt 2 \)
c) \(\Delta \) có phương trình tham số \(\Delta :\left\{ \begin{array}{l}x = t\\y = \frac{{ - 19}}{4}\end{array} \right.\) nên có phương trình tổng quát là
\(0.\left( {x - 0} \right) + \left( {y + \frac{{19}}{4}} \right) = 0 \Leftrightarrow y + \frac{{19}}{4} = 0\)
Suy ra khoảng cách từ điểm \(M(0;5)\) đến đường thẳng \(\Delta \) là
\(d\left( {M,\Delta } \right) = \frac{{\left| {5 + \frac{{19}}{4}} \right|}}{{\sqrt {{0^2} + {1^2}} }} = \frac{{39}}{4}\)
d) Khoảng cách từ \(M(0;0)\) đến \(\Delta :3x + 4y - 25 = 0\) là:
\(d\left( {M,\Delta } \right) = \frac{{\left| {3.0 + 4.0 - 25} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 5\)
Gọi \(M\left(2+2t;3+t\right)\)
M có tọa độ nguyên \(\Leftrightarrow t\) nguyên
\(\overrightarrow{AM}=\left(2+2t;2+t\right)\) \(\Rightarrow AM=\sqrt{\left(2+2t\right)^2+\left(2+t\right)^2}=5\)
\(\Leftrightarrow5t^2+12t-17=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{17}{5}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow M\left(4;4\right)\)
a) Đường thẳng \({\Delta _1}\)có một vectơ chỉ phương là \({\overrightarrow u _{{\Delta _1}}} = \left( {2;5} \right)\)
Do đó \({\overrightarrow n _{{\Delta _1}}} = \left( { - 5;2} \right)\), đồng thời \({\Delta _1}\) đi qua điểm \(M\left( {1;3} \right)\) nên phương trình tổng quát của \({\Delta _1}\) là: \(-5\left( {x - 1} \right) + 2\left( {y - 3} \right) = 0 \Leftrightarrow 5x - 2y + 1 = 0\).
b) Đường thẳng \({\Delta _2}\)có một vectơ pháp tuyến là \({\overrightarrow n _{{\Delta _2}}} = \left( {2;3} \right)\)
Do đó \({\overrightarrow u _{{\Delta _1}}} = \left( { - 3;2} \right)\), đồng thời \({\Delta _2}\) đi qua điểm \(N\left( {1;1} \right)\) nên phương trình tham số của \({\Delta _2}\) là: \(\left\{ \begin{array}{l}x = 1 - 3t\\y = 1 + 2t\end{array} \right.\).
Xét đường thẳng \(\Delta :x + 2y - 5 = 0\)
Vecto \(\overrightarrow n = (1;2)\) là một VTPT của \(\Delta \) => A đúng => Loại A
Vecto \(\overrightarrow u = ( - 2;1)\) là một VTCP của \(\Delta \) => B đúng => Loại B
Đường thẳng \(\Delta \)có hệ số góc \(k = - \frac{a}{b} = - \frac{1}{2}\) => D sai => Chọn D
Chọn D.