K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 7 2021

Gọi E là trung điểm AC, do H và K cùng nhìn AC dưới 1 góc vuông nên H, K thuộc đường tròn đường kính AC (1)

\(\Rightarrow EH=EK\) hay E nằm trên trung trực HK

Gọi F là trung điểm HK \(\Rightarrow F\left(2;-1\right)\)

\(\overrightarrow{HK}=\left(14;-8\right)=2\left(7;-4\right)\Rightarrow\) EF nhận (7;-4) là 1 vtpt

Phương trình EF: \(7\left(x-2\right)-4\left(y+1\right)=0\Leftrightarrow7x-4y-18=0\)

 Tọa độ E là nghiệm: \(\left\{{}\begin{matrix}x-y+10=0\\7x-4y-18=0\end{matrix}\right.\) \(\Rightarrow E\left(\dfrac{58}{3};\dfrac{88}{3}\right)\)

\(\widehat{ACH}=\widehat{HAK}\) (cùng phụ \(\widehat{ABC}\)\(\Rightarrow AH=HK\) 

Mà \(AE=EK\) theo (1) \(\Rightarrow AK\) là trung trực EH

\(\overrightarrow{HE}=\left(\dfrac{73}{3};\dfrac{103}{3}\right)=\dfrac{1}{3}\left(73,103\right)\) \(\Rightarrow AK\) nhận \(\left(103;-73\right)\) là 1 vtpt

Tới đây bạn hãy kiểm tra lại số liệu, số liệu quá bất hợp lý

Tính tiếp như sau:

Viết pt AK (biết đi qua K và có vtpt như trên)

Tìm tọa độ giao điểm P của EH và AK

Khi đó P là trung điểm AK, tìm tọa độ A dễ dàng bằng công thức trung điểm

NV
9 tháng 7 2021

undefined

15 tháng 7 2016

 Nối BM cắt AC tại N,ta chứng minh được BM vuông góc AC và BM=AC .tìm được N,tỷ lệ AN/AC=1/5.NM/BM=3/5 => 3AN=MN.tìm đc A,có các tỷ lệ lúc nãy tìm đc B,C.

Mình tính được : A(3;-3).B(1;-3).C(1;1)

21 tháng 3 2021

undefined

17 tháng 3 2019

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Ta có: \(\overrightarrow {EF}  = \left( { - 2;4} \right)\)

Gọi tọa độ điểm H là \(\left( {x;y} \right)\) ta có \(\overrightarrow {DH}  = \left( {x - 2;y - 2} \right),\overrightarrow {EH}  = \left( {x - 6;y - 2} \right)\)

H là chân đường cao nên \(\overrightarrow {DH}  \bot \overrightarrow {EF} \)

\(\begin{array}{l}\overrightarrow {DH}  \bot \overrightarrow {EF}  \Leftrightarrow \left( {x - 2} \right).\left( { - 2} \right) + \left( {y - 2} \right).4 = 0\\ \Leftrightarrow  - 2x + 4y - 4 = 0\end{array}\) (1)

Hai vectơ \(\overrightarrow {EH} ,\overrightarrow {EF} \) cùng  phương

 \( \Leftrightarrow \left( {x - 6} \right).( - 2) - \left( {y - 2} \right).4 = 0 \Leftrightarrow  - 2x - 4y + 20 = 0\)            (2)

Từ (1) và (2) ta có hệ phương trình

\(\left\{ \begin{array}{l} - 2x + 4y - 4 = 0\\ - 2x - 4y + 20 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = 3\end{array} \right.\)

Vậy \(H(4;3)\)

b) Ta có: \(\overrightarrow {DE}  = (4;0),\overrightarrow {DF}  = (0;4),\overrightarrow {EF}  = ( - 4;4)\)

Suy ra: \(DE = \left| {\overrightarrow {DE} } \right| = \sqrt {{4^2} + {0^2}}  = 4,DF = \left| {\overrightarrow {DF} } \right| = \sqrt {{0^2} + {4^2}}  = 4\)

            \(EF = \left| {\overrightarrow {EF} } \right| = \sqrt {{{( - 4)}^2} + {4^2}}  = 4\sqrt 2 \)

            \(\begin{array}{l}\cos D = \cos \left( {\overrightarrow {DE} ,\overrightarrow {DF} } \right) = \frac{{\overrightarrow {DE} .\overrightarrow {DF} }}{{DE.DF}} = \frac{{4.0 + 0.4}}{{4.4}} = 0 \Rightarrow \widehat D = 90^\circ \\\cos E = \cos \left( {\overrightarrow {ED} ,\overrightarrow {EF} } \right) = \frac{{\overrightarrow {ED} .\overrightarrow {EF} }}{{ED.EF}} = \frac{{\left( { - 4} \right).\left( { - 4} \right) + 0.4}}{{4.4\sqrt 2 }} = \frac{{\sqrt 2 }}{2} \Rightarrow \widehat E = 45^\circ \\\widehat F = 180^\circ  - \widehat D - \widehat E = 180^\circ  - 90^\circ  - 45^\circ  = 45^\circ \end{array}\)

NV
21 tháng 3 2021

Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x+y+1=0\\x-2y-2=0\end{matrix}\right.\) \(\Rightarrow B\left(0;-1\right)\)

Gọi vtpt của đường thẳng CM (cũng là đường cao kẻ từ C) có tọa độ \(\left(a;b\right)\)

H là chân đường cao kẻ từ B

\(cos\widehat{HBC}=\dfrac{\left|1.1+1.\left(-2\right)\right|}{\sqrt{1^2+1^2}.\sqrt{1^2+\left(-2\right)^2}}=\dfrac{1}{\sqrt{10}}\)

\(\Rightarrow cos\widehat{MCB}=cos\widehat{HBC}=\dfrac{1}{\sqrt{10}}=\dfrac{\left|a+b\right|}{\sqrt{a^2+b^2}.\sqrt{1^2+1^2}}\)

\(\Leftrightarrow\sqrt{a^2+b^2}=\sqrt{5}\left|a+b\right|\Leftrightarrow a^2+b^2=5\left(a+b\right)^2\)

\(\Leftrightarrow2a^2+5ab+2b^2=0\Leftrightarrow\left(a+2b\right)\left(2a+b\right)=0\)

Chọn \(\left(a;b\right)=\left[{}\begin{matrix}\left(2;-1\right)\\\left(1;-2\right)\end{matrix}\right.\) (trường hợp (1;-2) loại do song song BH)

\(\Rightarrow\) Phương trình đường cao kẻ từ C:

\(2\left(x-2\right)-1\left(y-1\right)=0\Leftrightarrow2x-y-3=0\)

Tọa độ C là nghiệm: \(\left\{{}\begin{matrix}x+y+1=0\\2x-y-3=0\end{matrix}\right.\) \(\Rightarrow C\left(...\right)\)

Gọi N là trung điểm BC \(\Rightarrow\) tọa độ N

Tam giác ABC cân tại A \(\Rightarrow\) AN là trung tuyến đồng thời là đường cao

\(\Rightarrow\) Đường thẳng AN vuông góc BC \(\Rightarrow\) nhận (1;-1) là 1 vtpt và đi qua N

\(\Rightarrow\) Phương trình AN

Đường thẳng AB vuông góc CM nên nhận (1;2) là 1 vtpt

\(\Rightarrow\) Phương trình AB (đi qua B và biết vtpt)

\(\Rightarrow\) Tọa độ A là giao điểm AB và AN