K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 3 2023

\(\overrightarrow{AB}=\left(1;-2\right)\Rightarrow AB=\sqrt{5}\)

\(\overrightarrow{AC}=\left(-2;2\right)\Rightarrow AC=2\sqrt{2}\)

\(BC=\left(-3;4\right)\Rightarrow BC=5\)

Chu vi tam giác ABC: \(AB+AC+BC=\sqrt{5}+2\sqrt{2}+5\)

\(AB=\sqrt{\left(5-1\right)^2+\left(-3+1\right)^2}=2\sqrt{5}\)

\(AC=\sqrt{\left(0-1\right)^2+\left(1+1\right)^2}=\sqrt{5}\)

\(BC=\sqrt{\left(0-5\right)^2+\left(1+3\right)^2}=\sqrt{29}\)

=>C=3 căn 5+căn 29

NV
31 tháng 3 2023

\(\overrightarrow{AB}=\left(4;-3\right)\Rightarrow AB=5\)

\(\overrightarrow{AC}=\left(6;0\right)\Rightarrow AC=6\)

\(\overrightarrow{BC}=\left(2;3\right)\Rightarrow BC=\sqrt{13}\)

Chu vi tam giác: \(AB+AC+BC=11+\sqrt{13}\)

\(AB=\sqrt{\left(0+1\right)^2+\left(2+3\right)^2}=\sqrt{26}\)

\(AC=\sqrt{\left(2+1\right)^2+\left(1+3\right)^2}=\sqrt{3^2+4^2}=5\)

\(BC=\sqrt{\left(2-0\right)^2+\left(1-2\right)^2}=\sqrt{5}\)

=>\(C=\sqrt{26}+5+\sqrt{5}\left(cm\right)\)

22 tháng 5 2019

Ta có  A B → = 2 ; −   2 B C → = 2 ; 2 C A → = −   4 ; 0 ⇒ A B = 2 2 + −   2 2 = 2 2 B C = 2 2 + 2 2 = 2 2 C A = −   4 2 + 0 2 = 4

Vậy chu vi P của tam giác ABC là P =AB + BC + CA  = 4 + ​ 4 2

 Chọn B.

NV
30 tháng 12 2020

\(\overrightarrow{AB}=\left(4;-1\right)\Rightarrow AB=\sqrt{4^2+\left(-1\right)^2}=\sqrt{17}\)

\(\overrightarrow{AC}=\left(3;-5\right)\Rightarrow AC=\sqrt{3^2+\left(-5\right)^2}=\sqrt{34}\)

\(\overrightarrow{CB}=\left(1;4\right)\Rightarrow BC=\sqrt{1^2+4^2}=\sqrt{17}\)

Chu vi: \(AB+AC+BC=2\sqrt{17}+\sqrt{34}\)

17 tháng 12 2023

 Gợi ý thôi nhé.

a) Có \(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2}=\sqrt{\left(\left(-1\right)-6\right)^2+\left(2-\left(-1\right)\right)^2}=\sqrt{58}\)

Tương tự như vậy, ta tính được AC, BC. 

 Tính góc: Dùng \(\cos A=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}\)

b) Chu vi thì bạn lấy 3 cạnh cộng lại.

 Diện tích: Dùng \(S_{ABC}=\dfrac{1}{2}AB.AC.\sin A\)

c) Gọi \(H\left(x_H,y_H\right)\) là trực tâm thì \(\left\{{}\begin{matrix}AH\perp BC\\BH\perp AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{BH}.\overrightarrow{AC}=0\end{matrix}\right.\)

 Sau đó dùng: \(\overrightarrow{u}\left(x_1,y_1\right);\overrightarrow{v}\left(x_2,y_2\right)\) thì \(\overrightarrow{u}.\overrightarrow{v}=x_1x_2+y_1y_2\) để lập hệ phương trình tìm \(x_H,y_H\)

Trọng tâm: Gọi \(G\left(x_G,y_G\right)\) là trọng tâm và M là trung điểm BC. Dùng \(\left\{{}\begin{matrix}x_M=\dfrac{x_B+x_C}{2}\\y_M=\dfrac{y_B+y_C}{2}\end{matrix}\right.\) để tìm tọa độ M. 

 Dùng \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\) để lập hpt tìm tọa độ G.

17 tháng 12 2023

Bài gì vậy ạ?

NV
5 tháng 1 2021

Gọi \(C\left(x;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-6;2\right)\\\overrightarrow{BC}=\left(x+2;-4\right)\end{matrix}\right.\)

Tam giác ABC vuông tại B \(\Leftrightarrow\overrightarrow{AB}.\overrightarrow{BC}=0\)

\(\Rightarrow-6\left(x+2\right)-8=0\) \(\Rightarrow x=-\dfrac{10}{3}\)

\(\Rightarrow C\left(-\dfrac{10}{3};0\right)\)

Bạn tự tính tọa độ \(\overrightarrow{AC};\overrightarrow{BC}\) từ đó suy ra độ dài 3 cạnh và tính được chu vi, diện tích

Do tam giác ABC vuông tại B nên ABCD là hcn khi \(\overrightarrow{AB}=\overrightarrow{DC}\)

Gọi \(D\left(x;y\right)\Rightarrow\overrightarrow{DC}=\left(-\dfrac{10}{3}-x;-y\right)\)

\(\Rightarrow\left\{{}\begin{matrix}-\dfrac{10}{3}-x=-6\\-y=2\end{matrix}\right.\) \(\Rightarrow D\left(\dfrac{8}{3};-2\right)\)