Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Ta có vecto chỉ phương của đường thẳng ∆ là
Vecto pháp tuyến của mặt phẳng β : x + y - 2 z + 1 = 0 là
Vì (α) là mặt phẳng chứa đường thẳng ∆ có phương trình và vuông góc với mặt phẳng β : x + y - 2 z + 1 = 0 nên (α) có một vecto pháp tuyến là:
Gọi d = α ∩ β , suy ra d có vecto chỉ phương là
Giao điểm của đường thẳng ∆ có phương trình và mặt phẳng: β : x + y - 2 z + 1 = 0 là I(3;2;2)
Suy ra phương trình đường thẳng
Vậy A(2;1;1) thuộc đường thẳng d.
Đáp án C
Phương trình mặt phẳng qua M và song song với ( α ) là:
3(x-3)-(y+1)+2(z+2)=0 ⇔ 3x-y+2z-6=0
Chọn A.
Mặt phẳng chứa A, B và vuông góc với (β) nên (α) có một vectơ pháp tuyến là:
Chọn A.
Mặt phẳng (α) vuông góc với 2 mặt phẳng (P) và (Q) nên có một VTPT là
Phương trình mặt phẳng (α) là:
1(x - 2) + 2(y + 1) + 1.(z - 5) = 0 hay x + 2y + z – 5 = 0
Đáp án D
Gọi mặt phẳng cần tìm là (P). Khi đó (P) nhận vtpt của α và β là cặp vtcp
Chọn D