Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lần sau em đăng bài ở học 24 để mọi người giúp đỡ em nhé!
Link đây: Cộng đồng học tập online | Học trực tuyến
1. Gọi I là tâm của mặt cầu cần tìm
Vì I thuộc d
=> I( a; -1; -a)
Mặt cầu tiếp xúc với hai mặt phẳng (p), (Q). nên ta co:
d(I; (P))=d(I;(Q))
<=> \(\frac{\left|a+2\left(-1\right)+2\left(-a\right)+3\right|}{\sqrt{1^2+2^2+2^2}}=\frac{\left|a+2\left(-1\right)+2\left(-a\right)+7\right|}{\sqrt{1^2+2^2+2^2}}\)
\(\Leftrightarrow\frac{\left|-a+1\right|}{3}=\frac{\left|-a+5\right|}{3}\Leftrightarrow a=3\)
=> I(3; -1; -3) ; bán kinh : R=d(I; P)=2/3
=> Phương trình mặt cầu:
\(\left(x-3\right)^2+\left(y+1\right)^2+\left(z+3\right)^2=\frac{4}{9}\)
đáp án C.
2. Gọi I là tâm mặt cầu: I(1; -1; 0)
Ta có: Phương trình mặt phẳng (P) tiếp xúc vs mặt Cầu S tại M
=> IM vuông góc vs mặt phẳng (P)
=> \(\overrightarrow{n_p}=\overrightarrow{MI}=\left(1;0;0\right)\)
=> Phương trình mặt phẳng (P) có véc tơ pháp tuyến: \(\overrightarrow{n_p}\)và qua điểm M
1(x-0)+0(y+1)+0(z-0) =0<=> x=0
đáp án B
3.
\(f\left(x\right)=\dfrac{1}{256}\left(2x+3\right)^{10}=\dfrac{1}{256} \sum \limits_{k=0} ^{10}C_{k}^{10}(2x)^k.3^{10-k}\)
Để có hệ số x^8 thì k=8 khi đó hệ số của x^8 là:
\(\dfrac{1}{256}C_{8}^{10}.2^8.3^{10-8}=405\)
đáp án D
4.
pt <=> \(\left(2.5\right)^{x^2-3}=10^{-2}.10^{3x-3}\)
\(\Leftrightarrow10^{x^2-3}=10^{3x-5}\)
\(\Leftrightarrow x^2-3=3x-5\Leftrightarrow x^2-3x+5=0\)
=> theo định lí viet tổng các nghiệm bằng 3, tích các nghiệm bằng 5
Đáp án A
a) Trục Ox là đường thẳng đi qua O(0, 0, 0) và nhận i→=(1,0,0) làm vectơ chỉ phương nên có phương trình tham số là:
* Tương tự, trục Oy có phương trình
Trục Oz có phương trình
b) Đường thẳng đi qua M0 (x0,y0,z0) song song với trục Ox sẽ có vectơ chỉ phương là i→(1,0,0) nên có phương trình tham số là:
tương tự ta có Phương trình của đường thẳng đi qua M0 (x0,y0,z0) và song song với Oy là:
phương trình đường thẳng đi qua M0 (x0,y0,z0) và song song với Oz là
c) Đường thẳng đi qua M(2, 0, -1) và có vectơ chỉ phương u→(-1,3,5) có phương trình tham số là
có phương trình chính tắc là
d) Đường thẳng đi qua N(-2, 1, 2) và có vectơ chỉ phương u→(0,0,-3) có phương trình tham số là
Đường thẳng này không có Phương trình chính tắc.
e) Đường thẳng đi qua N(3, 2, 1) và vuông góc với mặt phẳng: 2x- 5y + 4= 0 nên nó nhận vectơ pháp tuyến của mặt phẳng này làn→(2,-5,0) là vectơ chỉ phương, nên ta có phương trình tham số là
Đường thẳng này không có Phương trình chính tắc.
f) Đường thẳng đi qau P(2, 3, -1) và Q(1, 2, 4) sẽ nhận PQ→(-1,-1,5) là vectơ chỉ phương, nên có phương trình tham số là
và có phương tình chính tắc là
B C A D H K J S
Kẻ \(SH\perp AC\left(H\in AC\right)\)
Do \(\left(SAC\right)\perp\left(ABCD\right)\Rightarrow SH\perp\left(ABCD\right)\)
\(SA=\sqrt{AC^2-SC^2}=a;SH=\frac{SA.SC}{AC}=\frac{a\sqrt{3}}{2}\)
\(S_{ABCD}=\frac{AC.BD}{2}=2a^2\)
\(V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.2a^2=\frac{a^3\sqrt{3}}{3}\)
Ta có \(AH=\sqrt{SA^2-SH^2}=\frac{a}{2}\Rightarrow CA=4HA\Rightarrow d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)
Do BC//\(\left(SAD\right)\Rightarrow d\left(B,\left(SAD\right)\right)=d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)
Kẻ \(HK\perp AD\left(K\in AD\right),HJ\perp SK\left(J\in SK\right)\)
Chứng minh được \(\left(SHK\right)\perp\left(SAD\right)\) mà \(HJ\perp SK\Rightarrow HJ\perp\left(SAD\right)\Rightarrow d\left(H,\left(SAD\right)\right)=HJ\)
Tam giác AHK vuông cân tại K\(\Rightarrow HK=AH\sin45^0=\frac{a\sqrt{2}}{4}\)
\(\Rightarrow HJ=\frac{SH.HK}{\sqrt{SH^2+HK^2}}=\frac{a\sqrt{3}}{2\sqrt{7}}\)
Vậy \(d\left(B,\left(SAD\right)\right)=\frac{2a\sqrt{3}}{\sqrt{7}}=\frac{2a\sqrt{21}}{7}\)
a) Gọi \(\overrightarrow{u}\left(1;-2;-1\right)\) là vectơ chỉ phương của d, giả sử \(\overrightarrow{v}\left(a;b;c\right)\) là
Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA’ (h.105).
Khi đó :
A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0) A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)
P=(a;a2;a)P=(a;a2;a)
a) Ta có −−→AP=(a;a2;a)AP→=(a;a2;a)
−−→BC′=(0;a;a).BC′→=(0;a;a).
Gọi αα là góc giữa hai đường thẳng APAP và BC′BC′ ta có :
cosα=∣∣0+a22+a2∣∣√a2+a22+a2.√a2+a2=1√2⇒α=45ocosα=|0+a22+a2|a2+a22+a2.a2+a2=12⇒α=45o
b) Ta có : −−→AP=(a;a2;a)AP→=(a;a2;a), −−→AB=(a;0;0),−−→AC′=(a;a;a)AB→=(a;0;0),AC′→=(a;a;a)
⇒[−−→AP,−−→AB]=(∣∣∣a2a00∣∣∣;∣∣∣aa0a∣∣∣;∣∣∣aa2a0∣∣∣)=(0;a2;–a22)⇒[−−→AP,−−→AB].−−→AC′=0+a3–a32=a32.⇒[AP→,AB→]=(|a2a00|;|aa0a|;|aa2a0|)=(0;a2;–a22)⇒[AP→,AB→].AC′→=0+a3–a32=a32.
Vậy VAPBC′=16∣∣∣[−−→AP,−−→AB].−−→AC′∣∣∣=16.a32=a312.VAPBC′=16|[AP→,AB→].AC′→|=16.a32=a312.
c) Mặt phẳng (A′D′CB)(A′D′CB) song song với trục Oy nên có phương trình :
px+qz+n=0px+qz+n=0 (n≠0,p2+q2>0).(n≠0,p2+q2>0).
Vì mặt phẳng này đi qua A′,B,CA′,B,C nên ta xác định được p = q và n = -pa.
Cho p = 1, ta được phương trình mp(A′D′CB)(A′D′CB) là x+z–a=0x+z–a=0. Vectơ pháp tuyến của mặt phẳng này là →n=(1;0;1).n→=(1;0;1).
Từ giả thiết M∈AD′,N∈DB;AM=DN=kM∈AD′,N∈DB;AM=DN=k, ta tính được :
M=(0;k√2;k√2),N=(k√2;a√2−k√2;0).M=(0;k2;k2),N=(k2;a2−k2;0).
Suy ra −−−→MN=(k√2;a√2−2k√2;–k√2).MN→=(k2;a2−2k2;–k2).
Ta có −−−→MN.→n=1.k√2+0(a√2−2k√2)+1.(–k√2)=0MN→.n→=1.k2+0(a2−2k2)+1.(–k2)=0
⇒−−−→MN⊥→n.⇒MN→⊥n→.
Rõ ràng N∉mp(A′D′CB).N∉mp(A′D′CB). Suy ra MN song song với mp(A′D′CB).(A′D′CB).
d) Ta có MN2=(k√2)2+(a√2−2k√2)2+(–k√2)2.MN2=(k2)2+(a2−2k2)2+(–k2)2.
=3k2–2a√2k+a2=3⎡⎣(k–a√23)2+a29⎤⎦≥3a29=a23.=3k2–2a2k+a2=3[(k–a23)2+a29]≥3a29=a23.
MN2MN2 nhỏ nhất bằng a23a23 khi k=a√23k=a23 (thoả mãn điều kiện 0<k<a√20<k<a2 ).
Vậy MN ngắn nhất bằng a√33a33 khi k=a√23k=a23.
e) Khi MN ngắn nhất thì k=a√23k=a23 Khi đó −−−→MN=(a3;a3;–a3).MN→=(a3;a3;–a3).
Ta lại có −−→AD′=(0;a;a),−−→DB=(a;–a;0)AD′→=(0;a;a),DB→=(a;–a;0) nên −−−→MN.−−→AD′=0,−−−→MN.−−→DB=0.MN→.AD′→=0,MN→.DB→=0.
Vậy MN là đường vuông góc chung của AD’ và DB.
Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA’ (h.105).
Khi đó :
A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0) A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)
P=(a;a2;a)P=(a;a2;a)
a) Ta có −−→AP=(a;a2;a)AP→=(a;a2;a)
−−→BC′=(0;a;a).BC′→=(0;a;a).
Gọi αα là góc giữa hai đường thẳng APAP và BC′BC′ ta có :
cosα=∣∣0+a22+a2∣∣√a2+a22+a2.√a2+a2=1√2⇒α=45ocosα=|0+a22+a2|a2+a22+a2.a2+a2=12⇒α=45o
b) Ta có : −−→AP=(a;a2;a)AP→=(a;a2;a), −−→AB=(a;0;0),−−→AC′=(a;a;a)AB→=(a;0;0),AC′→=(a;a;a)
⇒[−−→AP,−−→AB]=(∣∣∣a2a00∣∣∣;∣∣∣aa0a∣∣∣;∣∣∣aa2a0∣∣∣)=(0;a2;–a22)⇒[−−→AP,−−→AB].−−→AC′=0+a3–a32=a32.⇒[AP→,AB→]=(|a2a00|;|aa0a|;|aa2a0|)=(0;a2;–a22)⇒[AP→,AB→].AC′→=0+a3–a32=a32.
Vậy VAPBC′=16∣∣∣[−−→AP,−−→AB].−−→AC′∣∣∣=16.a32=a312.VAPBC′=16|[AP→,AB→].AC′→|=16.a32=a312.
QUẢNG CÁO
c) Mặt phẳng (A′D′CB)(A′D′CB) song song với trục Oy nên có phương trình :
px+qz+n=0px+qz+n=0 (n≠0,p2+q2>0).(n≠0,p2+q2>0).
Vì mặt phẳng này đi qua A′,B,CA′,B,C nên ta xác định được p = q và n = -pa.
Cho p = 1, ta được phương trình mp(A′D′CB)(A′D′CB) là x+z–a=0x+z–a=0. Vectơ pháp tuyến của mặt phẳng này là →n=(1;0;1).n→=(1;0;1).
Từ giả thiết M∈AD′,N∈DB;AM=DN=kM∈AD′,N∈DB;AM=DN=k, ta tính được :
M=(0;k√2;k√2),N=(k√2;a√2−k√2;0).M=(0;k2;k2),N=(k2;a2−k2;0).
Suy ra −−−→MN=(k√2;a√2−2k√2;–k√2).MN→=(k2;a2−2k2;–k2).
Ta có −−−→MN.→n=1.k√2+0(a√2−2k√2)+1.(–k√2)=0MN→.n→=1.k2+0(a2−2k2)+1.(–k2)=0
⇒−−−→MN⊥→n.⇒MN→⊥n→.
Rõ ràng N∉mp(A′D′CB).N∉mp(A′D′CB). Suy ra MN song song với mp(A′D′CB).(A′D′CB).
d) Ta có MN2=(k√2)2+(a√2−2k√2)2+(–k√2)2.MN2=(k2)2+(a2−2k2)2+(–k2)2.
=3k2–2a√2k+a2=3⎡⎣(k–a√23)2+a29⎤⎦≥3a29=a23.=3k2–2a2k+a2=3[(k–a23)2+a29]≥3a29=a23.
MN2MN2 nhỏ nhất bằng a23a23 khi k=a√23k=a23 (thoả mãn điều kiện 0<k<a√20<k<a2 ).
Vậy MN ngắn nhất bằng a√33a33 khi k=a√23k=a23.
e) Khi MN ngắn nhất thì k=a√23k=a23 Khi đó −−−→MN=(a3;a3;–a3).MN→=(a3;a3;–a3).
Ta lại có −−→AD′=(0;a;a),−−→DB=(a;–a;0)AD′→=(0;a;a),DB→=(a;–a;0) nên −−−→MN.−−→AD′=0,−−−→MN.−−→DB=0.MN→.AD′→=0,MN→.DB→=0.
Vậy MN là đường vuông góc chung của AD’ và DB.
Mặt khác −−→A′C=(a;a;–a)=3−−−→MNA′C→=(a;a;–a)=3MN→, chứng tỏ −−−→MNMN→, −−→A′CA′C→ cùng phương. Do N∉A′CN∉A′C nên MN//A′C.Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA’ (h.105).
Khi đó :
A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0) A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)
P=(a;a2;a)P=(a;a2;a)
a) Ta có −−→AP=(a;a2;a)AP→=(a;a2;a)
−−→BC′=(0;a;a).BC′→=(0;a;a).
Gọi αα là góc giữa hai đường thẳng APAP và BC′BC′ ta có :
cosα=∣∣0+a22+a2∣∣√a2+a22+a2.√a2+a2=1√2⇒α=45ocosα=|0+a22+a2|a2+a22+a2.a2+a2=12⇒α=45o
b) Ta có : −−→AP=(a;a2;a)AP→=(a;a2;a), −−→AB=(a;0;0),−−→AC′=(a;a;a)AB→=(a;0;0),AC′→=(a;a;a)
⇒[−−→AP,−−→AB]=(∣∣∣a2a00∣∣∣;∣∣∣aa0a∣∣∣;∣∣∣aa2a0∣∣∣)=(0;a2;–a22)⇒[−−→AP,−−→AB].−−→AC′=0+a3–a32=a32.⇒[AP→,AB→]=(|a2a00|;|aa0a|;|aa2a0|)=(0;a2;–a22)⇒[AP→,AB→].AC′→=0+a3–a32=a32.
Vậy VAPBC′=16∣∣∣[−−→AP,−−→AB].−−→AC′∣∣∣=16.a32=a312.VAPBC′=16|[AP→,AB→].AC′→|=16.a32=a312.
QUẢNG CÁO
c) Mặt phẳng (A′D′CB)(A′D′CB) song song với trục Oy nên có phương trình :
px+qz+n=0px+qz+n=0 (n≠0,p2+q2>0).(n≠0,p2+q2>0).
Vì mặt phẳng này đi qua A′,B,CA′,B,C nên ta xác định được p = q và n = -pa.
Cho p = 1, ta được phương trình mp(A′D′CB)(A′D′CB) là x+z–a=0x+z–a=0. Vectơ pháp tuyến của mặt phẳng này là →n=(1;0;1).n→=(1;0;1).
Từ giả thiết M∈AD′,N∈DB;AM=DN=kM∈AD′,N∈DB;AM=DN=k, ta tính được :
M=(0;k√2;k√2),N=(k√2;a√2−k√2;0).M=(0;k2;k2),N=(k2;a2−k2;0).
Suy ra −−−→MN=(k√2;a√2−2k√2;–k√2).MN→=(k2;a2−2k2;–k2).
Ta có −−−→MN.→n=1.k√2+0(a√2−2k√2)+1.(–k√2)=0MN→.n→=1.k2+0(a2−2k2)+1.(–k2)=0
⇒−−−→MN⊥→n.⇒MN→⊥n→.
Rõ ràng N∉mp(A′D′CB).N∉mp(A′D′CB). Suy ra MN song song với mp(A′D′CB).(A′D′CB).
d) Ta có MN2=(k√2)2+(a√2−2k√2)2+(–k√2)2.MN2=(k2)2+(a2−2k2)2+(–k2)2.
=3k2–2a√2k+a2=3⎡⎣(k–a√23)2+a29⎤⎦≥3a29=a23.=3k2–2a2k+a2=3[(k–a23)2+a29]≥3a29=a23.
MN2MN2 nhỏ nhất bằng a23a23 khi k=a√23k=a23 (thoả mãn điều kiện 0<k<a√20<k<a2 ).
Vậy MN ngắn nhất bằng a√33a33 khi k=a√23k=a23.
e) Khi MN ngắn nhất thì k=a√23k=a23 Khi đó −−−→MN=(a3;a3;–a3).MN→=(a3;a3;–a3).
Ta lại có −−→AD′=(0;a;a),−−→DB=(a;–a;0)AD′→=(0;a;a),DB→=(a;–a;0) nên −−−→MN.−−→AD′=0,−−−→MN.−−→DB=0.MN→.AD′→=0,MN→.DB→=0.
Vậy MN là đường vuông góc chung của AD’ và DB.
Mặt khác −−→A′C=(a;a;–a)=3−−−→MNA′C→=(a;a;–a)=3MN→, chứng tỏ −−−→MNMN→, −−→A′CA′C→ cùng phương. Do N∉A′CN∉A′C nên MN//A′C.
Mặt khác −−→A′C=(a;a;–a)=3−−−→MNA′C→=(a;a;–a)=3MN→, chứng tỏ −−−→MNMN→, −−→A′CA′C→ cùng phương. Do N∉A′CN∉A′C nên MN//A′C.Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA’ (h.105).
Khi đó :
A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0) A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)
P=(a;a2;a)P=(a;a2;a)
a) Ta có −−→AP=(a;a2;a)AP→=(a;a2;a)
−−→BC′=(0;a;a).BC′→=(0;a;a).
Gọi αα là góc giữa hai đường thẳng APAP và BC′BC′ ta có :
cosα=∣∣0+a22+a2∣∣√a2+a22+a2.√a2+a2=1√2⇒α=45ocosα=|0+a22+a2|a2+a22+a2.a2+a2=12⇒α=45o
b) Ta có : −−→AP=(a;a2;a)AP→=(a;a2;a), −−→AB=(a;0;0),−−→AC′=(a;a;a)AB→=(a;0;0),AC′→=(a;a;a)
⇒[−−→AP,−−→AB]=(∣∣∣a2a00∣∣∣;∣∣∣aa0a∣∣∣;∣∣∣aa2a0∣∣∣)=(0;a2;–a22)⇒[−−→AP,−−→AB].−−→AC′=0+a3–a32=a32.⇒[AP→,AB→]=(|a2a00|;|aa0a|;|aa2a0|)=(0;a2;–a22)⇒[AP→,AB→].AC′→=0+a3–a32=a32.
Vậy VAPBC′=16∣∣∣[−−→AP,−−→AB].−−→AC′∣∣∣=16.a32=a312.VAPBC′=16|[AP→,AB→].AC′→|=16.a32=a312.
c) Mặt phẳng (A′D′CB)(A′D′CB) song song với trục Oy nên có phương trình :
px+qz+n=0px+qz+n=0 (n≠0,p2+q2>0).(n≠0,p2+q2>0).
Vì mặt phẳng này đi qua A′,B,CA′,B,C nên ta xác định được p = q và n = -pa.
Cho p = 1, ta được phương trình mp(A′D′CB)(A′D′CB) là x+z–a=0x+z–a=0. Vectơ pháp tuyến của mặt phẳng này là →n=(1;0;1).n→=(1;0;1).
Từ giả thiết M∈AD′,N∈DB;AM=DN=kM∈AD′,N∈DB;AM=DN=k, ta tính được :
M=(0;k√2;k√2),N=(k√2;a√2−k√2;0).M=(0;k2;k2),N=(k2;a2−k2;0).
Suy ra −−−→MN=(k√2;a√2−2k√2;–k√2).MN→=(k2;a2−2k2;–k2).
Ta có −−−→MN.→n=1.k√2+0(a√2−2k√2)+1.(–k√2)=0MN→.n→=1.k2+0(a2−2k2)+1.(–k2)=0
⇒−−−→MN⊥→n.⇒MN→⊥n→.
Rõ ràng N∉mp(A′D′CB).N∉mp(A′D′CB). Suy ra MN song song với mp(A′D′CB).(A′D′CB).
d) Ta có MN2=(k√2)2+(a√2−2k√2)2+(–k√2)2.MN2=(k2)2+(a2−2k2)2+(–k2)2.
=3k2–2a√2k+a2=3⎡⎣(k–a√23)2+a29⎤⎦≥3a29=a23.=3k2–2a2k+a2=3[(k–a23)2+a29]≥3a29=a23.
MN2MN2 nhỏ nhất bằng a23a23 khi k=a√23k=a23 (thoả mãn điều kiện 0<k<a√20<k<a2 ).
Vậy MN ngắn nhất bằng a√33a33 khi k=a√23k=a23.
e) Khi MN ngắn nhất thì k=a√23k=a23 Khi đó −−−→MN=(a3;a3;–a3).MN→=(a3;a3;–a3).
Ta lại có −−→AD′=(0;a;a),−−→DB=(a;–a;0)AD′→=(0;a;a),DB→=(a;–a;0) nên −−−→MN.−−→AD′=0,−−−→MN.−−→DB=0.MN→.AD′→=0,MN→.DB→=0.
Vậy MN là đường vuông góc chung của AD’ và DB.
Mặt khác −−→A′C=(a;a;–a)=3−−−→MNA′C→=(a;a;–a)=3MN→, chứng tỏ −−−→MNMN→, −−→A′CA′C→ cùng phương. Do N∉A′CN∉A′C nên MN//A′C.
19.
Phương trình mặt phẳng theo đoạn chắn:
\(\frac{x}{3}+\frac{y}{-4}+\frac{z}{-2}=1\)
\(\Leftrightarrow4x-3y-6z-12=0\)
20.
Phương trình mặt phẳng (ABC) theo đoạn chắn:
\(\frac{x}{1}+\frac{y}{2}+\frac{z}{3}=1\)
\(\Leftrightarrow6x+3y+2z-6=0\)
Chẳng đáp án nào đúng cả, chắc bạn ghi nhầm đáp án C số 1 thành số 0 :)
15.
\(2\left(x-2\right)-5\left(y+3\right)+1\left(z+2\right)=0\)
16.
\(\overrightarrow{n_1}=\left(1;1;-1\right)\) ; \(\overrightarrow{n_2}=\left(1;-1;1\right)\)
\(\left[\overrightarrow{n_1};\overrightarrow{n_2}\right]=\left(0;-2;-2\right)=-2\left(0;1;1\right)\)
Phương trình (P):
\(1\left(y-1\right)+1\left(z-1\right)=0\Leftrightarrow y+z-2=0\)
17.
\(\overrightarrow{n_P}=\left(1;-1;1\right)\) ; \(\overrightarrow{n_Q}=\left(3;2;-12\right)\)
\(\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(10;15;5\right)=5\left(2;3;1\right)\)
Phương trình mặt phẳng (R):
\(2x+3y+z=0\)
18.
\(\overrightarrow{MN}=\left(0;-2;3\right);\overrightarrow{MP}=\left(-2;1;3\right)\)
\(\left[\overrightarrow{MN};\overrightarrow{MP}\right]=\left(-9;-6;-4\right)=-1\left(9;6;4\right)\)
Phương trình:
\(9\left(x-2\right)+6\left(y-2\right)+4z=0\)
\(\Leftrightarrow9x+6y+4z-30=0\)
ღᏠᎮღĐiền❤RaiBo༻꧂
Phải giải chi tiết ra chứ, bài dễ mak, lớp 6 cx lm đc