Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Vì A, B, C lần lượt là hình chiếu vuông góc của M trên trục Ox, Oy, Oz nên: A − 3 ; 0 ; 0 B 0 ; 2 ; 0 C 0 ; 0 ; 4
Em có M’ là hình chiếu song song của M trên (ABC)
Đáp án A
Vì M ∈ d nên M t + 3 ; − t − 2 ; 2 t + 1 , t ∈ ℝ
Đường thẳng Δ có vtcp u Δ → = − 1 ; 2 ; − 3 .
Đường thẳng d ' : qua M t + 3 ; − t − 2 ; 2 t + 1 vtcp u d ' → = u Δ → = − 1 ; 2 ; − 3
⇒ d ' : x − t + 3 − 1 = y + t + 2 2 = z − 2 t + 1 − 3
M’ là hình chiếu song song của M trên (P)
⇒ M ' = d ' ∩ P ⇒ M ' 5 9 t + 2 ; − 1 9 t ; 2 3 t − 2 .
Đáp án C
Ta có: A(-3;0;0), B(0;2;0), C(0;0;4)
Suy ra A B C : x - 3 + y 2 + z 4 = 1 hay 4x - 6y - 3z + 12 = 0
Do vậy mặt phẳng 4x - 6y - 3z + 12 = 0 song song với mặt phẳng (ABC)
Phương pháp:
Phương tình mặt phẳng đi qua các điểm A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c có phương trình:
x a + y b + z c = 1
Cách giải:
Gọi A, B, C lần lượt là hình chiếu vuông góc của điểm M trên các trục Ox, Oy, Oz
Chọn: A
Chú ý: Học sinh hay nhầm lẫn phương trình mặt phẳng đi qua các điểm A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c
Đáp án C
Ta có các điểm A,B,C có tọa độ lần lượt như sau A(−2;0;0), B(0;3;0), C(0;0;4).
Phương trình mặt phẳng (ABC) theo đoạn chắn là x − 2 + y 3 + z 4 = 1 .
Phương trình tổng quát của mặt phẳng (ABC) là − 6 x + 4 y + 3 z − 12 = 0 .
Từ giả thiết, ta có M(4 ;0 ;0), N(0 ;-3 ;0), P(0 ;0 ;2)
Phương trình mặt phẳng (MNP) theo đoạn chắn là
Chọn B.
Đáp án D
Vì A, B, C lần lượt là hình chiếu vuông góc của M trên trục Ox, Oy, Oz nên: A − 3 ; 0 ; 0 B 0 ; 2 ; 0 C 0 ; 0 ; 4
Em có M’ là hình chiếu song song của M trên (ABC)