Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Ta có: d B ; P ≤ A B , dấu “=” xảy ra ⇔ A B ⊥ P
Khi đó n P → = A B → 1 ; - 1 ; 1 ⇒ P : x - y + z - 1 = 0 ⇒ d O ; P = 1 3 .
Đáp án D
Phương pháp :
Gọi (Q): x + y + z + a = 0 (a≠3) là mặt phẳng song song với mặt phẳng (P).
Sử dụng công thức tính khoảng cách từ 1 điểm đến một mặt phẳng.
Cách giải :
Gọi (Q): x + y + z + a = 0 (a≠3) là mặt phẳng song song với mặt phẳng (P).
Với
Vậy không có mặt phẳng (Q) nào thỏa mãn điều kiện bài toán
Đáp án C
Gọi (Q) là mặt phẳng qua A và song song với
P ⇒ Q : x + y + 2 z − 4 = 0
Ta có d B ; d ≤ A B ⇒ d B , d max ⇔ AB ⊥ d.
Ta có A B ¯ = 1 ; − 1 ; 0 ⇒ u d ¯ = A B ¯ , n p ¯ = − 2 ; − 2 ; 2
Do đó phương trình đường thẳng d là d : x − 2 1 = y − 2 1 = z − 1 .
Chọn đáp án D
Giả sử mặt phẳng (P) có vectơ pháp tuyến là n ⇀ = a ; b ; c a 2 + b 2 + c 2 ≠ 0 .
Khi đó phương trình mặt phẳng (P) có dạng a x + b y + c z + d = 0 .
Do M 0 ; 0 ; 1 ∈ P nên c + d = 0 ⇔ d = - c
Do N 0 ; 3 ; 1 ∈ P nên 3 b + c + d = 0 ⇔ b = 0
Khi đó P : a x + c z - c = 0
Từ giả thiết ta có d B ; P = 2 d A ; P
⇔ - 2 a + 2 c a 2 + c 2 = 2 a - c a 2 + c 2 (luôn đúng). Vậy có vô số mặt phẳng (P) thỏa mãn.