Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Vì M ∈ d nên M t + 3 ; − t − 2 ; 2 t + 1 , t ∈ ℝ
Đường thẳng Δ có vtcp u Δ → = − 1 ; 2 ; − 3 .
Đường thẳng d ' : qua M t + 3 ; − t − 2 ; 2 t + 1 vtcp u d ' → = u Δ → = − 1 ; 2 ; − 3
⇒ d ' : x − t + 3 − 1 = y + t + 2 2 = z − 2 t + 1 − 3
M’ là hình chiếu song song của M trên (P)
⇒ M ' = d ' ∩ P ⇒ M ' 5 9 t + 2 ; − 1 9 t ; 2 3 t − 2 .
Đáp án D
Gọi điểm I x ; y ; z sao cho 3 I A ¯ + 2 I B ¯ + I C ¯ = 0 ¯ suy ra điểm I(1;4;-3)
Xét mặt cầu S : x - 1 2 + y - 1 2 + z - 1 2 = 1 có tâm E(1;1;1) và bán kính R = 1.
Suy ra I E ¯ = ( 0 ; - 3 ; 4 ) ⇒ I E = 5 > R = 1 . Ta có T = 3 M A ¯ 2 + 2 . M B ¯ 2 + M C ¯ 2 = 3 . M I ¯ + I A ¯ 2 + 2 . M I ¯ + I B ¯ 2 + M I ¯ + I C ¯ 2
= 6 . M I 2 + 2 . M I ¯ . 3 I A ¯ + 2 I B ¯ + I C ¯ + 3 I A 2 + 2 I B 2 + I C 2 = 6 M I 2 + 3 I A 2 + 2 I B 2 + I C 2 .
Để tổng T đạt giá trị nhỏ nhất khi và chỉ khi MI nhỏ nhất vì tổng 3 I A 2 + 2 I B 2 + I C 2 không đổi. Suy ra M, E, I thẳng hàng mà IE = 5 và EM = 1 nên ⇒ 5 . E M ¯ = E I ¯ .
Lại có E I ¯ = 0 ; 3 ; - 4 và E M ¯ = a - 1 ; b - 1 ; c - 1 suy ra a = 1 5 b - 1 = 3 5 c - 1 = - 4 ⇒ a + b + c = 15 4 .
Đáp án A
Mặt cầu (S) có tâm I(1;1;1). Gọi E là điểm thỏa mãn 3 EA → + 2 EB → + EC → = 0 → ⇒ E 1 ; 4 ; − 3
T = 6 ME 2 + 3 EA 2 + 2 EB 2 + EC 2
T nhỏ nhất khi ME nhỏ nhất <=> M là 1 trong 2 giao điểm của đường thẳng IE và mặt cầu (S).
Đáp án C.
Gọi I x ; y ; z thỏa mãn
I A → + 2 I B → + 5 I C → = 0 ⇒ x = 3 + 2. ( − 3 ) + 5. ( − 1 ) 8 = − 1 y = − 1 + 2.0 + 5. ( − 3 ) 8 = − 2 z = − 3 + 2. ( − 1 ) + 5.1 8 = 0
⇒ I = ( − 1 ; − 2 ; 0 )
Ta có
M A → + 2 M B → + 5 M C → = M I → + I A → + 2 M I → + 2 I B → + 5 M I → + 5 I C →
= 8 M I → + I A → + 2 I B → + 5 I C → = 8 M I →
⇒ M A → + 2 M B → + 5 M C → min ⇔ 8 M I → min <=> M là hình chiếu của I lên (P)
Gọi Δ là đường thẳng đi qua I − 1 ; 2 ; 0 và vuông góc với
( P ) : 2 x + 4 y + 3 z − 19 = 0 có vectơ chỉ phương là 2 ; 4 ; 3 ⇒ Δ : x = − 1 + 2 t y = − 2 + 4 t z = 3 t
Thế vào (P)
⇒ 2 ( − 1 + 2 t ) + 4 ( − 2 + 4 t ) + 3 ( 3 t ) − 19 ⇔ t = 1
⇒ x = 1 y = 2 z = 3 ⇒ M 1 ; 2 ; 3 ⇒ a + b + c = 6
Đáp án D
Phương pháp:
+ Tìm tâm và bán kính của mặt cầu
+ Xác định vị trí tương đối của mặt phẳng và mặt cầu để suy ra vị trí của điểm M
+ Tìm tọa độ của đường thẳng và mặt cầu thì ta giải hệ phương trình gồm phương trình đường thẳng và phương trình mặt cầu
Cách giải:
Mặt cầu (S) có tâm
nên mặt phẳng (P) không cắt mặt cầu (S).Khi đó điểm M thuộc mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) là nhỏ nhất thì M là giao điểm của đường thẳng d đi qua I , nhận n P → = 2 ; - 1 ; 2 làm VTCP với mặt cầu.
Phương trình đường thẳng
Tọa độ giao điểm của đường thẳng d và mặt cầu (S) thỏa mãn hệ phương trình
Đáp án A
Gọi I là điểm sao cho 4 I A → + 3 I B → + 5 I C → = 0 → ⇒ I − 1 6 ; 1 12 ; 1 3
M A → . M B → + 2 M B → . M C → + 3 M C → . M A → = I A → − I M → I B → − I M → + 2 I B → − I M → I C → − I M → + 3 I C → − I M → I A → − I M → = I A → . I B → + 2 I B → . I C → + 3 I C → . I A → − I M → 4 I A → + 3 I B → + 5 I C → + 6 I M 2
Do I A → . I B → + 2 I B → . I C → + 3 I C → . I A → là hằng số và I M → 4 I A → + 3 I B → + 5 I C → = 0 Nên S min k h i I M min ⇔ M là hình chiếu của I lên mặt phẳng O x y ⇒ M − 1 6 ; 1 12 ; 0 ⇒ T = − 2 + 1 = − 1