K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2019

23 tháng 12 2016

1) 216

15 tháng 6 2017

Ta có (x-2y)4 =[x+(-2y)]4=C4k.x4-k.(-2y)k

Hệ số của số hạng có xy3 ứng với : 4-k=1 va k=3 <=> k=3

Vậy hệ số của xy3 là : C43.(-2)3=-32

3 tháng 2 2018

18 tháng 12 2022

2021 số

NV
4 tháng 11 2019

a/ \(\left(3^{\frac{1}{2}}+7^{\frac{1}{3}}\right)^{128}=\sum\limits^{128}_{k=0}C_{128}^k3^{\frac{k}{2}}.7^{\frac{128-k}{3}}\)

Do \(\left(3;7\right)=1\) nên để hạng tử là nguyên khi và chỉ khi:

\(\left\{{}\begin{matrix}\frac{k}{2}\in Z\\\frac{128-k}{3}\in Z\\0\le k\le128\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{k}{2}\in Z\\\frac{k+1}{3}\in Z\\0\le k\le128\end{matrix}\right.\) \(\Rightarrow k=6n+2\) (\(n\in N\))

\(0\le k\le128\Rightarrow0\le6n+2\le128\)

\(\Rightarrow0\le n\le21\Rightarrow\) có 22 hạng tử là số nguyên

b/\(\left(3^{\frac{1}{2}}+2^{\frac{3}{4}}\right)^{124}=\sum\limits^{124}_{k=0}C_{124}^k3^{\frac{k}{2}}2^{93-\frac{3k}{4}}\)

Hạng tử là nguyên khi và chỉ khi:

\(\left\{{}\begin{matrix}\frac{k}{2}\in Z\\\frac{3k}{4}\in Z\\0\le k\le124\end{matrix}\right.\) \(\Rightarrow k=4n\) với \(n\in N\)

\(\Rightarrow0\le4n\le124\Rightarrow0\le n\le31\)

Có 32 hạng tử nguyên

NV
12 tháng 11 2019

\(\left(2^{\frac{1}{2}}+3^{\frac{1}{4}}\right)^{200}\) có SHTQ: \(C_{200}^k\left(2^{\frac{1}{2}}\right)^k\left(3^{\frac{1}{4}}\right)^{200-k}=C_{200}^k2^{\frac{k}{2}}.3^{50-\frac{k}{4}}\)

Do 2 và 3 nguyên tố cùng nhau nên số hạng là hữu tỉ khi và chỉ khi:

\(\left\{{}\begin{matrix}\frac{k}{2}\in N\\\frac{k}{4}\in N\\k\in N\end{matrix}\right.\) \(\Rightarrow k=4n\)

\(\Rightarrow\)\(\frac{200-0}{4}+1=51\) số hạng hữu tỉ

11 tháng 10 2017

9 tháng 11 2016

có 840 cách chọn

11 tháng 11 2016

c1:

a) 840

b) ko có n thỏa mãn