K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

Ta có: A B ⊥ A D ;   C D ⊥ A D  (gt).

Þ AB // CD (vì cùng vuông góc với AD)              (1)

Ta lại có: C D E ^ = E ^ = 130 o (gt)

Þ EF // CD (vì có cặp góc so le trong bằng nhau). (2)

Từ (1) và (2) Þ AB // EF (vì cùng song song với CD).

10 tháng 10 2021

hình thiếu

NV
6 tháng 10 2021

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}-1=\dfrac{c}{d}-1\Rightarrow\dfrac{a-b}{b}=\dfrac{c-d}{d}\)

\(\Rightarrow\dfrac{b}{a-b}=\dfrac{d}{c-d}\Rightarrow\dfrac{2b}{a-b}=\dfrac{2d}{c-d}\)

\(\Rightarrow\dfrac{2b}{a-b}+1=\dfrac{2d}{c-d}+1\)

\(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\) (đpcm)

8 tháng 11 2019

Áp dụng dãy tỉ số bằng nhau:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}=\frac{e}{g}=\frac{a+b+c+d+e}{b+c+d+e+g}\)

=> \(\left(\frac{a}{b}\right)^{404}.\left(\frac{b}{c}\right)^{404}.\left(\frac{c}{d}\right)^{404}.\left(\frac{d}{e}\right)^{404}.\left(\frac{e}{g}\right)^{404}\)

\(=\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^{404}.\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^{404}.\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^{404}.\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^{404}.\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^{404}\)

=> \(\left(\frac{abcde}{bcdeg}\right)^{404}=\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^{404+404+404+404}\)

=> \(\frac{a^{404}}{g^{404}}=\left(\frac{a+b+c+d+e}{b+c+d+e+g}\right)^{2020}\)

29 tháng 8 2018

bạn vẽ hình được không?

a: Xét ΔABD và ΔEBD có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>góc BED=góc BAD=90 độ

=>ΔBED vuông tại E

c: AD=DE

DE<DC

=>AD<DC

d: AB+EF=BE+EF

mà BE+EF>BF

nên AB+EF>BF

17 tháng 7 2021

hình a, ta thấy 

\(\angle\left(A\right)+\angle\left(DCA\right)=120+60=180^0\)

mà 2 góc này ở vị trí trong cùng phía

\(=>AB//CD\left(1\right)\)

có \(\angle\left(DCE\right)+\angle\left(E\right)=40+140=180^O\)

mà 2 góc này ở vị trí trong cùng phía

\(=>CD//EF\left(2\right)\)

(1)(2)\(=>AB//EF\)

hình b, 

\(=\angle\left(BAD\right)=\angle\left(ADC\right)=30^0\)

mà 2 góc này ở vị trí so le trong \(=>AB//CD\left(1\right)\)

có \(\angle\left(CDE\right)=\angle\left(DEF\right)=40^o\)

mà 2 góc này ở vị trí so le trong \(=>CD//EF\left(2\right)\)

(1)(2)\(=>AB//EF\)

24 tháng 8 2017

+) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\Rightarrow ad< bc\)

( do b, d > 0 )

+) Ta có: \(ad< bc\)

\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\Rightarrow\dfrac{a}{b}< \dfrac{c}{d}\left(b,d>0\right)\)

24 tháng 8 2017

Để \(\dfrac{a}{b}< \dfrac{a+c}{b+d}\) thì \(a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow ab+ad< ab+bc\Leftrightarrow ad< bc\Leftrightarrow\dfrac{a}{b}< \dfrac{c}{d}\)

Để \(\dfrac{a+c}{b+d}< \dfrac{c}{d}\) thì \(\left(a+c\right).d< \left(b+d\right).c\Leftrightarrow ad+cd< bc+cd\Leftrightarrow ab< bc\Leftrightarrow\dfrac{a}{b}< \dfrac{c}{d}\)

Chúc Bạn Học Tốt !!!Đạt nhiều thành tích trong học tập

Xem lại đề nha bạn :\(\dfrac{a}{b},\dfrac{c}{d}\left(b,d>0\right)\) chứ

11 tháng 4 2017

Thay b^4=(ac)^2 và tương tự với d^4

Từ đó đặt thừa số chung và sẽ ra kết quả!