K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2019

Chọn B                 

Ta có 

Do đó

Ta cũng có  => n(A) = 8

Vậy xác suất của biến cố A là P(A) =  8 21

30 tháng 8 2019

Đáp án A

Để con châu chấu đáp xuống các điểm M(x; y) x + y < 2 thì con châu chấu sẽ nhảy trong khu vực hình thang BEIA

Để M(x; y) có tọa độ nguyên thì x ∈ - 2 ;   - 1 ;   0 ;   1 ;   2 ,   y ∈ { 0 ;   1 ;   2 }  

Nếu x ∈ - 2 ;   - 1 thì y ∈ { 0 ;   1 ;   2 } có 2.3 = 6 điểm

Nếu x = 0 thì y ∈ { 0 ;   1 }  có 2 điểm

Nếu x =1 => y = 0 => có 1 điểm

=> có tất cả 6 + 2 + 1 = 9 điểm. Để con châu chấu nhảy trong hình chữ nhật mà đáp xuống các điểm có tọa độ nguyên thì x ∈ - 2 ;   - 1 ;   0 ;   1 ;   2 ;   3 ;   4 ,   y ∈ { 0 ;   1 ;   2 } . Số các điểm M(x; y) có tọa độ nguyên là: 7.3 = 21 điểm. Xác suất cần tìm là:  P = 9 21 = 3 7 .

9 tháng 12 2017

Chọn C

Lời giải. Số các điểm có tọa độ nguyên thuộc hình chữ nhật là 7.3 = 21 điểm vì

Để con châu chấu đáp xuống các điểm M(x,y) có x + y < 2

thì con châu chấu sẽ nhảy trong khu vực hình thang BEIA

Để M(x,y) có tọa độ nguyên thì

= Nếu x ∈ - 2 ; - 1 thì y ∈ 0 ; 1 ; 2

⇒ có 6 điểm

= Nếu x = 0 thì  y ∈ 0 ; 1 ⇒  có 2 điểm

= Nếu x = 1 ⇒ y = 0 ⇒ có 1 điểm

⇒  có tất cả 6 + 2 +1 = 9 điểm thỏa mãn

Vậy xác suất cần tính  P = 9 21 = 3 7

25 tháng 1 2018

Đáp án D

Số phần tử của không gian mẫu tập hợp các điểm có tọa độ nguyên nằm trên hình chữ nhật OMNP là

n Ω = 101 x 11

Khi đó có 91 + 90 + . . . + 81 = 946  cặp (x;y) thỏa mãn

Vậy xác suất cần tính là

14 tháng 12 2018

Điểm A(x;y) nằm bên trong (kể cả trên cạnh) của 

Có 101 cách chọn x, 11 cách chọn y. Do đó số phần tử của không gian mẫu tập hợp các điểm có tọa độ nguyên nằm trên hình chữ nhật OMNP là n( Ω ) = 101 x 11

Gọi X là biến cố: “Các điểm A(x;y) thỏa mãn x + y ≤ 90”.

Vậy xác suất cần tính là

8 tháng 8 2017




14 tháng 3 2019

Đáp án A

Phương pháp:

+) Biểu diễn không gian mẫu dưới dạng tập hợp 

tìm  Ω

+) Gọi A là biến cố: “Tập hợp các điểm mà khoảng cách đến gốc tọa độ nhỏ hơn hoặc bằng 2”, biểu diễn A dưới dạng tập hợp và tìm số phần tử của A.

+) Tính xác suất của biến cố A: P(A) = A Ω  

Cách giải:

Không gian mẫu

 

Có 9 cách chọn x, 9 cách chọn y, do đó   Ω  = 9.9 = 81

Tập hợp các điểm mà khoảng cách đến gốc tọa độ nhỏ hơn hoặc bằng 2 là hình tròn tâm O bán kính 2.

Gọi  A  là  biến  cố:  “ Tập  hợp  các  điểm  mà  khoảng  cách  đến  gốc  tọa  độ  nhỏ  hơn  hoặc  bằng  2”