Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2019}{4^{2018}}\)
=> \(3S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2019}{2^{2018}}-\frac{1}{4}-\frac{2}{4^2}-\frac{3}{4^3}-...-\frac{2019}{4^{2019}}\)
=>3S=\(1+\frac{1}{4}+\frac{1}{4^2}+..+\frac{1}{2^{2018}}-\frac{2019}{4^{2019}}\)
còn lại tự giải nhé
bài 1 :
\(\frac{2}{3}\)+\(\frac{1}{3}\)=\(\frac{3}{3}\)=1
\(\frac{3}{4}\)+\(\frac{2}{4}\)+\(\frac{1}{4}\)=\(\frac{4}{4}\)=1
\(\frac{4}{5}\)+\(\frac{3}{5}\)+\(\frac{2}{5}\)+\(\frac{1}{5}\)=\(\frac{10}{5}\)= 2
chúc bạn học tốt !!!
Câu 2 :
\(\frac{x}{7}=-\frac{6}{21}\)
\(\Leftrightarrow21x=-6.7\)
\(\Leftrightarrow21x=-42\)
\(\Leftrightarrow-2\)
Câu 3 :
\(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}\)
\(\Rightarrow A=5\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)
\(\Rightarrow A=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(\Rightarrow A=5\left(1-\frac{1}{31}\right)\)
\(\Rightarrow A=5.\frac{30}{31}\)
\(\Rightarrow A=\frac{150}{31}>1\left(dpcm\right)\)
Câu 4 :
Số trang còn lại sau ngày đọc thứ nhất là :
\(1-\frac{2}{3}=\frac{1}{3}\) ( trang )
Ngày thứ 2 Hà đọc được :
\(\frac{1}{3}.\frac{3}{4}=\frac{1}{4}\) ( trang )
Ngày thứ 3 Hà đọc được :
\(1-\frac{2}{3}-\frac{1}{4}=\frac{1}{12}\) ( trang )
a. Quyển sách đó có số trang là :
\(24:\frac{1}{12}=288\) ( trang )
b. Ngày thứ nhất Hà đọc được số trang là :
\(288.\frac{2}{3}=192\) ( trang )
Ngày thứ hai Hà đọc được số trang là :
\(\left(288-192\right).\frac{3}{4}=72\) ( trang )
Đặt \(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\)
Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{5^2}< \frac{1}{4.5}\)
...
\(\frac{1}{2014^2}< \frac{1}{2013.2014}\)
\(\Rightarrow B< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2013.2014}\)
\(\Rightarrow B< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(\Rightarrow B< \frac{1}{2}-\frac{1}{2014}< \frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)
Vậy A<\(\frac{3}{4}\)
A<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)=\(\frac{2013}{2014}\)<\(\frac{3}{4}\)
k chép đề
3/2.A=\(\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4+\left(\frac{3}{2}\right)^5+...+\left(\frac{3}{2}\right)^{2013}\)
3/2A-A=(\(\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4+\left(\frac{3}{2}\right)^5+...+\left(\frac{3}{2}\right)^{2013}\)) - (\(\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4+...+\left(\frac{3}{2}\right)^{2012}\))
1/2 . A =\(\frac{1}{2}+\left(\frac{3}{2}\right)^{2013}\)
A=\(\frac{\frac{1}{2}+\left(\frac{3}{2}\right)^{2013}}{2}\)
B-A=\(\frac{\left(\frac{3}{2}\right)^{2018}}{2}-\)\(\frac{\frac{1}{2}+\left(\frac{3}{2}\right)^{2013}}{2}\)
\(B-A=\frac{\frac{1}{2}}{2}=\frac{1}{2}:2=\frac{1}{4}\)
=\(18.\left(\frac{-5}{6}\right)^2-2.\frac{1}{4}.\frac{-4}{5}+2\)
\(=18.\frac{25}{36}+\frac{2}{5}+2\)
\(=\frac{25}{2}+\frac{12}{5}=\frac{149}{10}\)