K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2019

Ta có: 

Vì K ∈ PQ nên PK // BM; KQ // MC

Trong ΔABM có PK // BM nên

Trong ΔAMC có KQ // MC nên

mà BM = MC (gt) nên PK = KQ.

21 tháng 4 2018

A B C D E M O H K d

Từ B và C kẻ 2 đường thẳng song song với d, chúng cắt AM lần lượt tại H và K.

Theo ĐL Thales, ta có: \(\frac{AB}{AD}=\frac{AH}{AO}\)\(;\frac{AC}{AE}=\frac{AK}{AO}\)

\(\Rightarrow\frac{AB}{AD}+\frac{AC}{AE}=\frac{AH+AK}{AO}\)

Tam giác BHM= Tam giác CKM (g.c.g) => HM=KM

\(\Rightarrow AH+AK=AH+AH+HM+KM=2AH+2HM=2AM\)

\(\Rightarrow\frac{AB}{AD}+\frac{AC}{AE}=\frac{2AM}{AO}\)

Do O là trung điểm AM nên \(\frac{AB}{AD}+\frac{AC}{AE}=\frac{4AO}{AO}=4\)(đpcm).

3 tháng 3 2020

A C P Q M K B

Xét tam giác ABC có: \(\frac{AP}{AB}=\frac{AQ}{AC}\left(gt\right)\)

\(\Rightarrow PQ//BC\)( Định lý Ta-let đảo )

Xét tam giác ABM có PK//BM ( PQ//BC )

\(\Rightarrow\frac{PK}{BM}=\frac{AK}{AM}\)( hệ quả của định lý Ta-let ) (1)

Xét tam giác AMC có KQ//MC ( PQ//BC )

\(\Rightarrow\frac{KQ}{MC}=\frac{AK}{AM}\)( hệ quả của định lý Ta-let ) (2)

Mà BM=MC ( vì AM là đường trung tuyến úng với BC ) (3)

Từ (1),(2) và (3) \(\Rightarrow KQ=KP\left(đpcm\right)\)

5 tháng 2 2020

A B C M D I E F

a) Xét \(\Delta\)ABD có: ME // AD 

=> \(\frac{BM}{BD}=\frac{EM}{AD}\)(1)

Xét \(\Delta\)CFM có: AD//FM

=> \(\frac{AD}{FM}=\frac{CD}{CM}\)=> \(\frac{CM}{CD}=\frac{FM}{AD}\)(2)

Từ (1); (2) => \(\frac{EM}{AD}+\frac{FM}{AD}=\frac{BM}{BD}+\frac{CM}{CD}\)vì AD là trung tuyến => BD = CD

=> \(\frac{EM+FM}{AD}=\frac{BM+CM}{CD}=\frac{BC}{CD}=2\)

=> \(EM+FM=2AD\)

b) Tứ giác ADMI là hình bình hành

Chứng minh:

I là trung điểm của EF 

=> ME + MF = ME + ME + EF = 2ME + 2EI = 2( ME + EI ) = 2MI

mà ME + MF = 2 AD 

=> MI = AD 

Mặt khác: MI//AD

=> ADMI là hình bình hành