K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Gọi H là hình chiếu vuông góc của N Ox.

 

Ta có: \(\widehat {NOH} = \widehat {ONM} = \widehat {OMN} = \widehat {MOx} = \alpha \) (do NM song song với Ox)

Mà \(\widehat {xOM} + \widehat {NOH} = {180^o}\)

Suy ra \(\widehat {xON} + \widehat {MOx} = {180^o}\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

 

a) Do MN song song với Ox nên \(\alpha  = \widehat {OMN} = \widehat {ONM} = \widehat {NOx'}\)

Mà \(\widehat {xON} = {180^o} - \widehat {NOx'} = {180^o} - \alpha \)

\( \Rightarrow \widehat {xON} = {180^o} - \alpha \)

b) Dễ thấy: Điểm N đối xứng với M qua trục Oy

\( \Rightarrow N( - {x_0};{y_0})\)

Lại có: điểm N biểu diễn góc \({180^o} - \alpha \)

 \( \Rightarrow \left\{ \begin{array}{l}\sin ({180^o} - \alpha ) = {y_N} = {y_0}\\\cos ({180^o} - \alpha ) = {x_N} =  - {x_0}\end{array} \right.\);

Mà: \(\sin \alpha  = {y_0};\;\cos \alpha  = {x_0}\)

\( \Rightarrow \left\{ \begin{array}{l}\sin ({180^o} - \alpha ) = \sin \alpha \;\\\cos ({180^o} - \alpha ) =  - \cos \alpha \end{array} \right.\)

\( \Rightarrow \left\{ \begin{array}{l}\tan ({180^o} - \alpha ) =  - \tan \alpha \;\\\cot ({180^o} - \alpha ) =  - \cot \alpha \end{array} \right.\)

24 tháng 9 2023

Tham khảo:

Trường hợp 1:  \(\alpha  = {90^o}\)

Khi đó \({90^o} - \alpha  = {0^o}\)

Tức là M và N lần lượt trùng nhau với B và A.

Và  \(\cos \alpha  = 0 = \sin \left( {{{90}^o} - \alpha } \right)\)

Trường hợp 2: \({0^o} < \alpha  < {90^o} \Rightarrow {0^o} < {90^o} - \alpha  < {90^0}\)

M và N cùng nằm bên trái phải trục tung.

Ta có: \(\alpha  = \widehat {AOM};\;\;{90^o} - \alpha  = \widehat {AON}\)

Dễ thấy: \(\widehat {AON} = {90^o} - \alpha  = {90^o} - \widehat {NOB}\;\;\; \Rightarrow \alpha  = \widehat {NOB}\)

Xét hai tam giác vuông \(NOQ\) và tam giác \(MOP\)  ta có:

\(OM = ON\)

\(\widehat {POM} = \widehat {QON}\)

\(\begin{array}{l} \Rightarrow \Delta NOQ = \Delta MOP\\ \Rightarrow \left\{ \begin{array}{l}OP = OQ\\QN = MP\end{array} \right.\end{array}\)

Mà \(M\left( {{x_0};{y_o}} \right)\) nên \(N\left( {{y_o};{x_0}} \right)\). Nói cách khác:

\(\cos \left( {{{90}^o} - \alpha } \right) = \sin \alpha ;\;\;\sin \left( {{{90}^o} - \alpha } \right) = \cos \alpha .\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Ta có hai góc \(\widehat {xOz}\) và \(\widehat {tOy}\) đối đỉnh nên \(\widehat {xOz} = \widehat {tOy} = 38^\circ \)

hai góc \(\widehat {xOt}\) và \(\widehat {yOz}\) đối đỉnh nên \(\widehat {xOt} = \widehat {yOz}\)

\(\widehat {xOz}\) và \(\widehat {xOt}\) bù nhau nên \(\widehat {xOt} = 180^\circ  - \widehat {xOz} = 180^\circ  - 38^\circ  = 142^\circ \)

Vậy \(\widehat {xOz} = \widehat {tOy} = 38^\circ \) và \(\widehat {xOt} = \widehat {yOz} = 142^\circ \)

8 tháng 10 2017

Giải bài tập Toán 10 | Giải Toán lớp 10

Gọi E, F lần lượt là hình chiếu của M trên Oy, Ox.

Khi đó xét ΔMOF vuông tại F thì :

Giải bài tập Toán 10 | Giải Toán lớp 10

7 tháng 8 2019

Đáp án C

Đường tròn (C) có tâm  I( -1 ; 3) và bán kính R= 2

Do d’// d nên phương trình của d’ có dạng : 3x- 4y + c= 0.

Để d’ chắn trên (C) một dây cung có độ dài lớn nhất thì d’ phải đi qua tâm I của đường tròn ( trong các dây của đường tròn dây lớn nhất là đường kính).

Do I( -1 ; 3) thuộc d’ nên : 3.(-1) – 4.3 +c= 0

=> c = 15

Vậy đường thẳng cần tìm là d’ : 3x- 4y + 15= 0.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Áp dụng định lí cosin trong tam giác ABC, ta có:

\(\begin{array}{l}B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\\ \Leftrightarrow B{C^2} = {3^2} + {4^2} - 2.3.4.\cos {120^o}\\ \Leftrightarrow B{C^2} = 37\\ \Leftrightarrow BC \approx 6\end{array}\)

Áp dụng định lí sin trong tam giác ABC, ta có:

 \(\begin{array}{l}\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = 2R\\ \Rightarrow \sin B = \frac{{AC.\sin A}}{{BC}} = \frac{{4.\sin {{120}^o}}}{6} = \frac{{\sqrt 3 }}{3}\\ \Leftrightarrow \widehat B \approx {35^o}\end{array}\)

b) \(R = \frac{{BC}}{{2.\sin A}} = \frac{6}{{2.\sin {{120}^o}}} = 2\sqrt 3 \)

c) Diện tích tam giác ABC: \(S = \frac{1}{2}4.3.\sin {120^o} = 3\sqrt 3 .\)

d) Gọi H là chân đường cao hạ từ đỉnh A.

Ta có: \(S = \frac{1}{2}AH.BC\)

\( \Rightarrow AH = \frac{{2S}}{{BC}} = \frac{{2.3\sqrt 3 }}{6} = \sqrt 3 \)

e) \(\overrightarrow {AB} .\overrightarrow {AC}  = 3.4.\cos (\widehat {BAC}) = 12.\cos {120^o} =  - 6.\)

Ta có: \(\overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AM} \) (do M là trung điểm BC)

\( \Leftrightarrow \overrightarrow {AM}  = \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC} )\)

\(\begin{array}{l} \Rightarrow \overrightarrow {AM} .\overrightarrow {BC}  = \frac{1}{2}(\overrightarrow {AB}  + \overrightarrow {AC} )(\overrightarrow {AC}  - \overrightarrow {AB} )\\ = \frac{1}{2}\left( {{{\overrightarrow {AC} }^2} - {{\overrightarrow {AB} }^2}} \right) = \frac{1}{2}\left( {A{C^2} - A{B^2}} \right)\\ = \frac{1}{2}\left( {{4^2} - {3^2}} \right) = \frac{7}{2}.\end{array}\)

11 tháng 4 2019

Đáp án B

Đường tròn (C) có tâm I( 1; -3) và R= 2

 có phương trình  4x- 3y+ m= 0.

Vẽ

Vậy:

24 tháng 9 2023

Tham khảo:

Áp dụng định lí sin cho tam giác ABC ta có:

\(\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = 2R\)

\(\begin{array}{l} \Rightarrow \sin C = \frac{{c.\sin B}}{b} = \frac{{5.\sin {{80}^o}}}{8} \approx 0,6155\\ \Leftrightarrow \widehat C \approx {38^o}\end{array}\)

Lại có: \(\widehat A = {180^o} - \widehat B - \widehat C = {180^o} - {80^o} - {38^o} = {62^o}\)

Theo định lí sin, ta suy ra \(a = \sin A.\dfrac{b}{{\sin B}} = \sin {62^o}\dfrac{8}{{\sin {{80}^o}}} \approx 7,17\)

Và \(2R = \dfrac{b}{{\sin B}} \Rightarrow R = \dfrac{b}{{2\sin B}} = \dfrac{8}{{2\sin {{80}^o}}} \approx 4,062.\)

Vậy tam giác ABC có \(\widehat A = {62^o}\); \(\widehat C \approx {38^o}\); \(a \approx 7,17\) và \(R \approx 4,062.\)

5 tháng 7 2018

Giải bài 7 trang 140 SGK Đại Số 10 | Giải toán lớp 10