Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có:
\(\widehat{AOB}+\widehat{BOC}=\widehat{AOC}\)
\(\widehat{BOC}=\widehat{AOC}-\widehat{AOB}\)
\(\widehat{BOC}=100^0-50^0\)
\(\widehat{BOC}=50^0\)
\(\Rightarrow\) \(\widehat{AOB}=\widehat{BOC}=50^0\)
Vậy OB là tia phân giác của \(\widehat{AOC}\)
b. Vì OD là tia đối của tia OA nên \(\widehat{AOD}\) tạo thành góc bẹt và có số đo là 1800
Ta có:
\(\widehat{AOC}+\widehat{COD}=\widehat{AOD}\)
\(\widehat{COD}=\widehat{AOD}-\widehat{AOC}\)
\(\widehat{COD}=180^0-100^0\)
\(\widehat{COD}=80^0\)
Vậy \(\widehat{COD}\) có số đo là 800
Ta lại có:
\(\widehat{DOC}+\widehat{COB}=\widehat{DOB}\)
\(\widehat{DOB}=80^0+50^0\)
\(\widehat{DOB}=130^0\)
Vậy \(\widehat{DOB}\) có số đo là 1300
a. Ta có:
ˆAOB+ˆBOC=ˆAOCAOB^+BOC^=AOC^
ˆBOC=ˆAOC−ˆAOBBOC^=AOC^−AOB^
ˆBOC=1000−500BOC^=1000−500
ˆBOC=500BOC^=500
⇒⇒ ˆAOB=ˆBOC=500AOB^=BOC^=500
Vậy OB là tia phân giác của ˆAOCAOC^
b. Vì OD là tia đối của tia OA nên ˆAODAOD^ tạo thành góc bẹt và có số đo là 1800
Ta có:
ˆAOC+ˆCOD=ˆAODAOC^+COD^=AOD^
ˆCOD=ˆAOD−ˆAOCCOD^=AOD^−AOC^
ˆCOD=1800−1000COD^=1800−1000
ˆCOD=800COD^=800
Vậy ˆCODCOD^ có số đo là 800
Ta lại có:
ˆDOC+ˆCOB=ˆDOBDOC^+COB^=DOB^
ˆDOB=800+500DOB^=800+500
ˆDOB=1300DOB^=1300
Vậy ˆDOBDOB^ có số đo là 1300
a: Trên cùng một nửa mặt phẳng bờ chứa tia Oa, ta có: \(\widehat{aOb}< \widehat{aOc}\)
nên tia Ob nằm giữa hai tia Oa và Oc
Suy ra: \(\widehat{aOb}+\widehat{bOc}=\widehat{aOc}\)
hay \(\widehat{bOc}=70^0\)
a) Ta có : aOb < aOc ( \(40^o< 140^o\))
⇒ Ob nằm giữa Oa và Oc
⇒ aOb + bOc = aOc
⇒ bOc = aOc - aOb = \(140^o-40^o=100^o\)
b) Có : Od là tia đối của Oc ⇒ Ob nằm giữa Oc và Od
⇒ dOb + bOc = \(180^o\) ( 2 góc kề bù )
⇒ dOb = \(180^o\) - bOc = \(180^o-100^o=80^o\)
Lại có : bOd > bOa ( \(80^o>40^o\))
⇒ Oa nằm giữa Ob và Od
⇒ dOa + aOb = dOb
⇒ dOa = dOb - aOb = \(80^o-40^o=40^o\)
mà aOb = \(40^o\)(gt)
⇒ Tia Oa là tia phân giác của bOd
Giải:
a) Vì +)Ob;Oc cùng ∈ 1 nửa mặt phẳng bờ chứa tia Oa
+)\(a\widehat{O}b< a\widehat{O}c\) (40o<140o)
⇒Ob nằm giữa Oa và Oc
⇒\(a\widehat{O}b+b\widehat{O}c=a\widehat{O}c\)
\(40^o+b\widehat{O}c=140^o\)
\(b\widehat{O}c=140^o-40^o\)
\(b\widehat{O}c=100^o\)
b) Vì Od là tia đối của Oc
⇒\(c\widehat{O}d=180^o\)
⇒\(d\widehat{O}b+b\widehat{O}c=180^o\)
\(d\widehat{O}b+100^o=180^o\)
\(d\widehat{O}b=180^o-100^o\)
\(d\widehat{O}b=80^o\)
⇒\(b\widehat{O}a+a\widehat{O}d=b\widehat{O}d\)
\(40^o+a\widehat{O}d=80^o\)
\(a\widehat{O}b=80^o-40^o\)
\(a\widehat{O}b=40^o\)
Vì +) \(b\widehat{O}a+a\widehat{O}d=b\widehat{O}d\)
+) \(b\widehat{O}a=a\widehat{O}d=40^o\)
⇒Oa là tia p/g của \(b\widehat{O}d\)
Chúc bạn học tốt!
a)Ta có: hai tia On và Óc cùng thuộc một nửa mặt phẳng chứa tia Oa
Mà aOb<aOc(60o <120o)
=} Tia Ob nằm giữa hai tia Oa và Ob (1)
=} aOb + boc=aOc
Mà aOb =60o,aOc=120
=}Boc=120o-60o=60o(2)
Vậy bOc=60o
a) Trên cùng một nửa mặt phẳng bờ chứa tia Oa, ta có: \(\widehat{aOb}< \widehat{aOc}\left(60^0< 120^0\right)\)
nên tia Ob nằm giữa hai tia Oa và Oc
\(\Leftrightarrow\widehat{aOb}+\widehat{bOc}=\widehat{aOc}\)
\(\Leftrightarrow\widehat{bOc}+60^0=120^0\)
hay \(\widehat{bOc}=60^0\)
Vậy: \(\widehat{bOc}=60^0\)
a) Trên cùng một nửa mặt phẳng bờ chứa tia OA, ta có: \(\widehat{AOB}< \widehat{AOC}\left(40^0< 80^0\right)\)
nên tia OB nằm giữa hai tia OA và OC
b) Ta có: tia OB nằm giữa hai tia OA và OC(cmt)
nên \(\widehat{AOB}+\widehat{BOC}=\widehat{AOC}\)
\(\Leftrightarrow\widehat{BOC}+40^0=80^0\)
\(\Leftrightarrow\widehat{BOC}=40^0\)
mà \(\widehat{AOB}=40^0\left(gt\right)\)
nên \(\widehat{AOB}=\widehat{BOC}\)
Ta có: tia OB nằm giữa hai tia OA và OC(cmt)
mà \(\widehat{AOB}=\widehat{BOC}\)(cmt)
nên OB là tia phân giác của \(\widehat{AOC}\)(đpcm)