Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10a=10^2017+10/10^2017+1
10b=10^2018+10/10^2018+1
cậu tự so sánh nhé vậy là dễ rồi
Ta có: \(A=\dfrac{10^{2016}+1}{10^{2017}+1}\Rightarrow10A=\dfrac{10\left(10^{2016}+1\right)}{10^{2017}+1}=\dfrac{10^{2017}+10}{10^{2017}+1}\)
\(=\dfrac{10^{2017}+1+9}{10^{2017}+1}=\dfrac{10^{2017}+1}{10^{2017}+1}+\dfrac{9}{10^{2017}+1}=1+\dfrac{9}{10^{2017}+1}\)
Tương tự ta cũng có: \(10B=1+\dfrac{9}{10^{2018}+1}\)
Lại có: \(10^{2017}< 10^{2018}\Rightarrow10^{2017}+1< 10^{2018}+1\)
\(\Rightarrow\dfrac{1}{10^{2017}+1}>\dfrac{1}{10^{2018}+1}\Rightarrow\dfrac{9}{10^{2017}+1}>\dfrac{9}{10^{2018}+1}\)
\(\Rightarrow1+\dfrac{9}{10^{2017}+1}>1+\dfrac{9}{10^{2018}+1}\Rightarrow10A>10B\Rightarrow A>B\)
\(a)\dfrac{-11}{12}và\dfrac{17}{-18}\) \(\Leftrightarrow\dfrac{-11}{12}và\dfrac{-17}{18}\) \(\Leftrightarrow\dfrac{-33}{36}và\dfrac{-34}{36}\)
Ta thấy rằng : \(-33>-34\Rightarrow\dfrac{-33}{36}>\dfrac{-34}{36}\)
Hay : \(\dfrac{-11}{12}>\dfrac{17}{-18}\)
\(b)\dfrac{-14}{-21}và\dfrac{-60}{-72}\)
Ta có : \(\dfrac{-14}{-21}\text{=}\dfrac{-14:-7}{-21:-7}\text{=}\dfrac{2}{3}\text{=}\dfrac{4}{6}\)
\(\dfrac{-60}{-72}\text{=}\dfrac{-60:-12}{-72:-12}=\dfrac{5}{6}\)
Do đó : \(\dfrac{-14}{-21}< \dfrac{-60}{-72}\)
\(c)\dfrac{2135}{13790}và\dfrac{4}{3}\)
Xét phân số : \(\dfrac{2135}{13790}\) ta thấy rằng : \(tử< mẫu\left(2135< 13790\right)\)
\(\Rightarrow\dfrac{2135}{13790}< 1\)
Xét phân số : \(\dfrac{4}{3}có\) : \(tử>mẫu\left(4>3\right)\)
\(\Rightarrow\dfrac{4}{3}>1\)
Do đó : \(\dfrac{2135}{13790}< \dfrac{4}{3}\)
\(d)\dfrac{2022}{2021}và\dfrac{10}{9}\)
Ta thấy rằng : \(\dfrac{2022}{2021}-\dfrac{1}{2021}\text{=}1\)
\(\dfrac{10}{9}-\dfrac{1}{9}\text{=}1\)
Mà : \(\dfrac{1}{9}>\dfrac{1}{2021}\)
\(\Rightarrow\dfrac{2022}{2021}< \dfrac{10}{9}\)
\(e)\dfrac{35}{36}và\dfrac{16}{17}\)
Ta có : \(\dfrac{35}{36}+\dfrac{1}{36}\text{=}1\)
\(\dfrac{16}{17}+\dfrac{1}{17}\text{=}1\)
Mà : \(\dfrac{1}{36}< \dfrac{1}{17}\)
\(\Rightarrow\dfrac{35}{36}>\dfrac{16}{17}\)
\(f)-1,3< -1,2\)
a) Ta có:
\(-\dfrac{11}{12}=\dfrac{1}{12}-1\)
\(-\dfrac{17}{18}=\dfrac{1}{18}-1\)
Mà: \(\dfrac{1}{12}>\dfrac{1}{18}\)
Hay: \(\dfrac{1}{12}-1>\dfrac{1}{18}-1\Rightarrow-\dfrac{11}{12}>-\dfrac{17}{18}\)
b) Ta có:
\(\dfrac{-14}{-21}=\dfrac{2}{3}=\dfrac{4}{6}\)
\(\dfrac{-60}{-72}=\dfrac{5}{6}\)
Mà: \(5>4\Rightarrow\dfrac{-60}{-72}>\dfrac{-14}{-21}\)
c) Ta có:
\(\dfrac{2135}{13790}=\dfrac{61}{394}< 1\) (tử nhỏ hơn mẫu)
\(\dfrac{4}{3}>1\) (tử lớn hơn mẫu)
Ta có: \(\dfrac{61}{394}< \dfrac{4}{3}\Rightarrow\dfrac{2135}{13790}< \dfrac{4}{3}\)
d) Ta có:
\(\dfrac{2022}{2021}=\dfrac{1}{2021}+1\)
\(\dfrac{10}{9}=\dfrac{1}{9}+1\)
Ta thấy: \(\dfrac{1}{2021}< \dfrac{1}{9}\Rightarrow\dfrac{1}{2021}+1< \dfrac{1}{9}+1\)
Hay \(\dfrac{2022}{2021}< \dfrac{10}{9}\)
e) Ta có:
\(\dfrac{35}{36}=1-\dfrac{1}{36}\)
\(\dfrac{16}{17}=1-\dfrac{1}{17}\)
Ta có: \(\dfrac{1}{36}< \dfrac{1}{17}\Rightarrow1-\dfrac{1}{36}>1-\dfrac{1}{17}\)
Hay \(\dfrac{35}{36}>\dfrac{16}{17}\)
f) Ta có: \(1,3>1,2\)
\(\Rightarrow-1,3< -1,2\)
a, \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\Leftrightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy x = -1
b, \(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)
\(\Leftrightarrow\left(\dfrac{x+4}{2014}+1\right)+\left(\dfrac{x+3}{2015}+1\right)=\left(\dfrac{x+2}{2016}+1\right)+\left(\dfrac{x+1}{2017}+1\right)\)\(\Leftrightarrow\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}=\dfrac{x+2018}{2016}+\dfrac{x+2018}{2017}\)
\(\Leftrightarrow\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}-\dfrac{x+2018}{2016}-\dfrac{x+2018}{2017}=0\)
\(\Leftrightarrow\left(x+2018\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)=0\)
\(\Leftrightarrow xx+2018=0\Leftrightarrow x=-2018\)
Vậy x = -2018
Nguyễn Huy Tú, cho mk hỏi sao câu a bt đó lại bằng 0 vậy ? Mk ko hiểu lắm
Bài 1 :
a, Ta có :
\(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow ad< bc\)
\(\Leftrightarrow ad+ab< bc+ab\)
\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Leftrightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) \(\left(1\right)\)
Mà \(ad< bc\)
\(\Leftrightarrow ad+cd< bc+cd\)
\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Leftrightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\rightarrowđpcm\)
b) \(\dfrac{-1}{3}=\dfrac{-16}{48}< \dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48}< \dfrac{-12}{48}=\dfrac{-1}{4}\)
Ta thấy :
\(\left\{{}\begin{matrix}A=\dfrac{10^{2017}+1}{10^{2016}+1}>1\\B=\dfrac{10^{2018}+1}{10^{2017}+1}>1\end{matrix}\right.\)
Áp dụng tính chất \(\dfrac{a}{b}>1\Leftrightarrow\dfrac{a+m}{b+m}\) ta có :
\(B=\dfrac{10^{2018}+1}{10^{2017}+1}>\dfrac{10^{2018}+1+9}{10^{2017}+1+9}=\dfrac{10^{2018}+10}{10^{2017}+10}=\dfrac{10\left(10^{2017}+1\right)}{10\left(10^{2016}+1\right)}=\dfrac{10^{2017}+1}{10^{2016}+1}=A\)
\(\Leftrightarrow B>A\)
ồ, lâu h ms gặp
a,
Dễ thấy \(\dfrac{2005^{2016}+1}{2005^{2017}+1}< 1\)
Áp dụng khi \(\dfrac{a}{b}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+n}{b+n}\left(n\in N^{\circledast}\right)\)
Ta có:
\(\dfrac{2005^{2016}+1}{2005^{2017}+1}< \dfrac{2005^{2016}+1+\left(2005^2-1\right)}{2005^{2017}+1+\left(2005^2-1\right)}=\dfrac{2005^{2016}+2005^2}{2005^{2017}+2005^2}=\dfrac{2005^2\left(2005^{2014}+1\right)}{2005^2\left(2005^{2015}+1\right)}=\dfrac{2005^{2014}+1}{2005^{2015}+1}\)
Vậy \(\dfrac{2005^{2016}+1}{2005^{2017}+1}< \dfrac{2005^{2014}+1}{2005^{2015}+1}\)
b,
\(\dfrac{19}{10}=\dfrac{10+9}{10}=\dfrac{10}{10}+\dfrac{9}{10}=1+\dfrac{9}{10}\\ \dfrac{49}{40}=\dfrac{40+9}{40}=\dfrac{40}{40}+\dfrac{9}{40}=1+\dfrac{9}{40}\)
Vì \(10< 40\Rightarrow\dfrac{9}{10}>\dfrac{9}{40}\Rightarrow1+\dfrac{9}{10}>1+\dfrac{9}{40}\Leftrightarrow\dfrac{19}{10}>\dfrac{49}{40}\)Vậy \(\dfrac{19}{10}>\dfrac{49}{40}\)
c,
\(\dfrac{13}{20}=\dfrac{20-7}{20}=\dfrac{20}{20}-\dfrac{7}{20}=1-\dfrac{7}{20}\\ \dfrac{33}{40}=\dfrac{40-7}{40}=\dfrac{40}{40}-\dfrac{7}{40}=1-\dfrac{7}{40}\)
Vì \(20< 40\Rightarrow\dfrac{7}{20}>\dfrac{7}{40}\Rightarrow1-\dfrac{7}{20}< 1-\dfrac{7}{40}\Leftrightarrow\dfrac{13}{20}< \dfrac{33}{40}\)
Vậy \(\dfrac{13}{20}< \dfrac{33}{40}\)
Áp dụng tính chất:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(\)Đặt: \(B=\dfrac{2005^{2016}+1}{2005^{2017}+1}< 1\)
\(\Rightarrow B< \dfrac{2005^{2016}+1+4020024}{2005^{2017}+1+4020024}\)
\(B< \dfrac{2005^{2016}+4020025}{2005^{2017}+4020025}\)
\(B< \dfrac{2005^2\left(2005^{2014}+1\right)}{2005^2\left(2005^{2015}+1\right)}\)
\(B< \dfrac{2005^{2014}+1}{2005^{2015}+1}=A\)
\(B< A\)
\(\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{2}{n\left(n+1\right)}=\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{n\left(n+1\right)}\)
\(=\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{n\left(n+1\right)}\)
\(=2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}\right)\)
\(=2.\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)
\(=2.\left(\dfrac{1}{2}-\dfrac{1}{n+1}\right)=\dfrac{2016}{2017}\)
\(\Rightarrow\dfrac{2016}{2017}:2=\dfrac{1}{2}-\dfrac{1}{n+1}\)
\(\dfrac{1008}{2017}=\dfrac{1}{2}-\dfrac{1}{n+1}\)
\(\Rightarrow\dfrac{1}{n+1}=\dfrac{1}{4034}\)
=>n+1=4034
n=4034-1
n=4033
Ta có:A=\(\dfrac{-21}{10^{2016}}\)+\(\dfrac{-12}{10^{2017}}\)
= \(\dfrac{-12}{10^{2016}}\)+\(\dfrac{-9}{10^{2016}}\)+\(\dfrac{-12}{10^{2017}}\).
B=\(\dfrac{-12}{10^{2016}}\)+\(\dfrac{-21}{10^{2017}}\)
=\(\dfrac{-12}{10^{2016}}\)+\(\dfrac{-9}{10^{2017}}\)+ \(\dfrac{-12}{10^{2017}}\)
Khi đó để so sánh A và B ta chỉ cần so sánh:\(\dfrac{-9}{10^{2016}}\)và \(\dfrac{-9}{10^{2017}}\)vì A và B cùng có:
\(\dfrac{-12}{10^{2016}}\)+\(\dfrac{-12}{10^{2017}}\).
Do:\(\dfrac{9}{10^{2016}}\)>\(\dfrac{9}{10^{2017}}\).
Suy ra:\(\dfrac{-9}{10^{2016}}\)<\(\dfrac{-9}{10^{2017}}\).
Từ đó ta suy ra được: A< B
bn nhìn kĩ trên là hiểu thôi, cụ thể:
\(\dfrac{9}{10^{2016}}\)>\(\dfrac{9}{10^{2017}}\).Nên số đối của chúng sẽ là dấu ngược lại.
\(\dfrac{-9}{10^{2016}}\)<\(\dfrac{-9}{10^{2017}}\)
Bn suy nghĩ kĩ thì được thôi, nếu chắc ăn hơn thì bn cứ VD đi