K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

Ta có:A=\(\dfrac{-21}{10^{2016}}\)+\(\dfrac{-12}{10^{2017}}\)

= \(\dfrac{-12}{10^{2016}}\)+\(\dfrac{-9}{10^{2016}}\)+\(\dfrac{-12}{10^{2017}}\).

B=\(\dfrac{-12}{10^{2016}}\)+\(\dfrac{-21}{10^{2017}}\)

=\(\dfrac{-12}{10^{2016}}\)+\(\dfrac{-9}{10^{2017}}\)+ \(\dfrac{-12}{10^{2017}}\)

Khi đó để so sánh A và B ta chỉ cần so sánh:\(\dfrac{-9}{10^{2016}}\)\(\dfrac{-9}{10^{2017}}\)vì A và B cùng có:

\(\dfrac{-12}{10^{2016}}\)+\(\dfrac{-12}{10^{2017}}\).

Do:\(\dfrac{9}{10^{2016}}\)>\(\dfrac{9}{10^{2017}}\).

Suy ra:\(\dfrac{-9}{10^{2016}}\)<\(\dfrac{-9}{10^{2017}}\).

Từ đó ta suy ra được: A< B

24 tháng 4 2017

bn nhìn kĩ trên là hiểu thôi, cụ thể:

\(\dfrac{9}{10^{2016}}\)>\(\dfrac{9}{10^{2017}}\).Nên số đối của chúng sẽ là dấu ngược lại.

\(\dfrac{-9}{10^{2016}}\)<\(\dfrac{-9}{10^{2017}}\)

Bn suy nghĩ kĩ thì được thôi, nếu chắc ăn hơn thì bn cứ VD đi

14 tháng 4 2017

10a=10^2017+10/10^2017+1
10b=10^2018+10/10^2018+1

cậu tự so sánh nhé vậy là dễ rồi


14 tháng 4 2017

Ta có: \(A=\dfrac{10^{2016}+1}{10^{2017}+1}\Rightarrow10A=\dfrac{10\left(10^{2016}+1\right)}{10^{2017}+1}=\dfrac{10^{2017}+10}{10^{2017}+1}\)

\(=\dfrac{10^{2017}+1+9}{10^{2017}+1}=\dfrac{10^{2017}+1}{10^{2017}+1}+\dfrac{9}{10^{2017}+1}=1+\dfrac{9}{10^{2017}+1}\)

Tương tự ta cũng có: \(10B=1+\dfrac{9}{10^{2018}+1}\)

Lại có: \(10^{2017}< 10^{2018}\Rightarrow10^{2017}+1< 10^{2018}+1\)

\(\Rightarrow\dfrac{1}{10^{2017}+1}>\dfrac{1}{10^{2018}+1}\Rightarrow\dfrac{9}{10^{2017}+1}>\dfrac{9}{10^{2018}+1}\)

\(\Rightarrow1+\dfrac{9}{10^{2017}+1}>1+\dfrac{9}{10^{2018}+1}\Rightarrow10A>10B\Rightarrow A>B\)

11 tháng 7 2023

\(a)\dfrac{-11}{12}và\dfrac{17}{-18}\) \(\Leftrightarrow\dfrac{-11}{12}và\dfrac{-17}{18}\) \(\Leftrightarrow\dfrac{-33}{36}và\dfrac{-34}{36}\) 

 

Ta thấy rằng :  \(-33>-34\Rightarrow\dfrac{-33}{36}>\dfrac{-34}{36}\)

Hay : \(\dfrac{-11}{12}>\dfrac{17}{-18}\)

\(b)\dfrac{-14}{-21}và\dfrac{-60}{-72}\)

Ta có : \(\dfrac{-14}{-21}\text{=}\dfrac{-14:-7}{-21:-7}\text{=}\dfrac{2}{3}\text{=}\dfrac{4}{6}\)

\(\dfrac{-60}{-72}\text{=}\dfrac{-60:-12}{-72:-12}=\dfrac{5}{6}\)

Do đó : \(\dfrac{-14}{-21}< \dfrac{-60}{-72}\)

\(c)\dfrac{2135}{13790}và\dfrac{4}{3}\)

Xét phân số : \(\dfrac{2135}{13790}\) ta thấy rằng : \(tử< mẫu\left(2135< 13790\right)\)

\(\Rightarrow\dfrac{2135}{13790}< 1\)

Xét phân số : \(\dfrac{4}{3}có\) : \(tử>mẫu\left(4>3\right)\)

\(\Rightarrow\dfrac{4}{3}>1\)

Do đó : \(\dfrac{2135}{13790}< \dfrac{4}{3}\)

\(d)\dfrac{2022}{2021}và\dfrac{10}{9}\) 

Ta thấy rằng : \(\dfrac{2022}{2021}-\dfrac{1}{2021}\text{=}1\)

\(\dfrac{10}{9}-\dfrac{1}{9}\text{=}1\)

Mà : \(\dfrac{1}{9}>\dfrac{1}{2021}\)

\(\Rightarrow\dfrac{2022}{2021}< \dfrac{10}{9}\)

\(e)\dfrac{35}{36}và\dfrac{16}{17}\)

Ta có : \(\dfrac{35}{36}+\dfrac{1}{36}\text{=}1\)

            \(\dfrac{16}{17}+\dfrac{1}{17}\text{=}1\)

Mà : \(\dfrac{1}{36}< \dfrac{1}{17}\)

\(\Rightarrow\dfrac{35}{36}>\dfrac{16}{17}\)

\(f)-1,3< -1,2\)

 

 

11 tháng 7 2023

a) Ta có: 

\(-\dfrac{11}{12}=\dfrac{1}{12}-1\)

\(-\dfrac{17}{18}=\dfrac{1}{18}-1\)

Mà: \(\dfrac{1}{12}>\dfrac{1}{18}\)

Hay: \(\dfrac{1}{12}-1>\dfrac{1}{18}-1\Rightarrow-\dfrac{11}{12}>-\dfrac{17}{18}\)

b) Ta có: 

\(\dfrac{-14}{-21}=\dfrac{2}{3}=\dfrac{4}{6}\)

\(\dfrac{-60}{-72}=\dfrac{5}{6}\)

Mà: \(5>4\Rightarrow\dfrac{-60}{-72}>\dfrac{-14}{-21}\)

c) Ta có:

\(\dfrac{2135}{13790}=\dfrac{61}{394}< 1\) (tử nhỏ hơn mẫu) 

\(\dfrac{4}{3}>1\) (tử lớn hơn mẫu) 

Ta có: \(\dfrac{61}{394}< \dfrac{4}{3}\Rightarrow\dfrac{2135}{13790}< \dfrac{4}{3}\)

d) Ta có:

\(\dfrac{2022}{2021}=\dfrac{1}{2021}+1\)

\(\dfrac{10}{9}=\dfrac{1}{9}+1\)

Ta thấy: \(\dfrac{1}{2021}< \dfrac{1}{9}\Rightarrow\dfrac{1}{2021}+1< \dfrac{1}{9}+1\)

Hay \(\dfrac{2022}{2021}< \dfrac{10}{9}\)

e) Ta có:

\(\dfrac{35}{36}=1-\dfrac{1}{36}\)

\(\dfrac{16}{17}=1-\dfrac{1}{17}\)

Ta có: \(\dfrac{1}{36}< \dfrac{1}{17}\Rightarrow1-\dfrac{1}{36}>1-\dfrac{1}{17}\)

Hay \(\dfrac{35}{36}>\dfrac{16}{17}\)

f) Ta có: \(1,3>1,2\)

\(\Rightarrow-1,3< -1,2\)

1 tháng 7 2017

a, \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)

\(\Leftrightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy x = -1

b, \(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)

\(\Leftrightarrow\left(\dfrac{x+4}{2014}+1\right)+\left(\dfrac{x+3}{2015}+1\right)=\left(\dfrac{x+2}{2016}+1\right)+\left(\dfrac{x+1}{2017}+1\right)\)\(\Leftrightarrow\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}=\dfrac{x+2018}{2016}+\dfrac{x+2018}{2017}\)

\(\Leftrightarrow\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}-\dfrac{x+2018}{2016}-\dfrac{x+2018}{2017}=0\)

\(\Leftrightarrow\left(x+2018\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)=0\)

\(\Leftrightarrow xx+2018=0\Leftrightarrow x=-2018\)

Vậy x = -2018

1 tháng 8 2017

Nguyễn Huy Tú, cho mk hỏi sao câu a bt đó lại bằng 0 vậy ? Mk ko hiểu lắm

10 tháng 4 2022

A>B do A>4 cònB<4

13 tháng 7 2023

ngáo đá 😂

14 tháng 8 2017

Bài 1 :

a, Ta có :

\(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow ad< bc\)

\(\Leftrightarrow ad+ab< bc+ab\)

\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Leftrightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) \(\left(1\right)\)

\(ad< bc\)

\(\Leftrightarrow ad+cd< bc+cd\)

\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Leftrightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) \(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\rightarrowđpcm\)

b) \(\dfrac{-1}{3}=\dfrac{-16}{48}< \dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48}< \dfrac{-12}{48}=\dfrac{-1}{4}\)

14 tháng 8 2017

Ta thấy :

\(\left\{{}\begin{matrix}A=\dfrac{10^{2017}+1}{10^{2016}+1}>1\\B=\dfrac{10^{2018}+1}{10^{2017}+1}>1\end{matrix}\right.\)

Áp dụng tính chất \(\dfrac{a}{b}>1\Leftrightarrow\dfrac{a+m}{b+m}\) ta có :

\(B=\dfrac{10^{2018}+1}{10^{2017}+1}>\dfrac{10^{2018}+1+9}{10^{2017}+1+9}=\dfrac{10^{2018}+10}{10^{2017}+10}=\dfrac{10\left(10^{2017}+1\right)}{10\left(10^{2016}+1\right)}=\dfrac{10^{2017}+1}{10^{2016}+1}=A\)

\(\Leftrightarrow B>A\)

11 tháng 9 2021

câu hỏi là gì

11 tháng 9 2021

Viết các hữu tỉ sau dưới dạng phân số tối giản có mẫu dương

10 tháng 8 2017

ồ, lâu h ms gặp

a,

Dễ thấy \(\dfrac{2005^{2016}+1}{2005^{2017}+1}< 1\)

Áp dụng khi \(\dfrac{a}{b}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+n}{b+n}\left(n\in N^{\circledast}\right)\)

Ta có:

\(\dfrac{2005^{2016}+1}{2005^{2017}+1}< \dfrac{2005^{2016}+1+\left(2005^2-1\right)}{2005^{2017}+1+\left(2005^2-1\right)}=\dfrac{2005^{2016}+2005^2}{2005^{2017}+2005^2}=\dfrac{2005^2\left(2005^{2014}+1\right)}{2005^2\left(2005^{2015}+1\right)}=\dfrac{2005^{2014}+1}{2005^{2015}+1}\)

Vậy \(\dfrac{2005^{2016}+1}{2005^{2017}+1}< \dfrac{2005^{2014}+1}{2005^{2015}+1}\)

b,

\(\dfrac{19}{10}=\dfrac{10+9}{10}=\dfrac{10}{10}+\dfrac{9}{10}=1+\dfrac{9}{10}\\ \dfrac{49}{40}=\dfrac{40+9}{40}=\dfrac{40}{40}+\dfrac{9}{40}=1+\dfrac{9}{40}\)

\(10< 40\Rightarrow\dfrac{9}{10}>\dfrac{9}{40}\Rightarrow1+\dfrac{9}{10}>1+\dfrac{9}{40}\Leftrightarrow\dfrac{19}{10}>\dfrac{49}{40}\)Vậy \(\dfrac{19}{10}>\dfrac{49}{40}\)

c,

\(\dfrac{13}{20}=\dfrac{20-7}{20}=\dfrac{20}{20}-\dfrac{7}{20}=1-\dfrac{7}{20}\\ \dfrac{33}{40}=\dfrac{40-7}{40}=\dfrac{40}{40}-\dfrac{7}{40}=1-\dfrac{7}{40}\)

\(20< 40\Rightarrow\dfrac{7}{20}>\dfrac{7}{40}\Rightarrow1-\dfrac{7}{20}< 1-\dfrac{7}{40}\Leftrightarrow\dfrac{13}{20}< \dfrac{33}{40}\)

Vậy \(\dfrac{13}{20}< \dfrac{33}{40}\)

10 tháng 8 2017

Áp dụng tính chất:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(\)Đặt: \(B=\dfrac{2005^{2016}+1}{2005^{2017}+1}< 1\)

\(\Rightarrow B< \dfrac{2005^{2016}+1+4020024}{2005^{2017}+1+4020024}\)

\(B< \dfrac{2005^{2016}+4020025}{2005^{2017}+4020025}\)

\(B< \dfrac{2005^2\left(2005^{2014}+1\right)}{2005^2\left(2005^{2015}+1\right)}\)

\(B< \dfrac{2005^{2014}+1}{2005^{2015}+1}=A\)

\(B< A\)

23 tháng 11 2017

\(\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{2}{n\left(n+1\right)}=\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{n\left(n+1\right)}\)

\(=\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{n\left(n+1\right)}\)

\(=2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}\right)\)

\(=2.\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)

\(=2.\left(\dfrac{1}{2}-\dfrac{1}{n+1}\right)=\dfrac{2016}{2017}\)

\(\Rightarrow\dfrac{2016}{2017}:2=\dfrac{1}{2}-\dfrac{1}{n+1}\)

\(\dfrac{1008}{2017}=\dfrac{1}{2}-\dfrac{1}{n+1}\)

\(\Rightarrow\dfrac{1}{n+1}=\dfrac{1}{4034}\)

=>n+1=4034

n=4034-1

n=4033