Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(R=\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\\ =\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{4-2-\sqrt{2+\sqrt{3}}}\\ =\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2-\sqrt{2+\sqrt{3}}}\\ =\sqrt{2+\sqrt{3}}\cdot\sqrt{4-2-\sqrt{3}}\\ =\sqrt{2+\sqrt{3}}\cdot\sqrt{2-\sqrt{3}}\\ =\sqrt{4-3}=1\)
\(=\left[\left(2-\sqrt{2}\right)^2-3\right]\cdot\left(3+\sqrt{2}\right)\cdot\left(\sqrt{2}-1\right)\)
\(=\left(6-4\sqrt{2}-3\right)\left(3\sqrt{2}-3+2-\sqrt{2}\right)\)
\(=\left(3-4\sqrt{2}\right)\left(2\sqrt{2}-1\right)\)
\(=6\sqrt{2}-3-16+4\sqrt{2}=10\sqrt{2}-19\)
được bạn ạ mình nhờ thầy giải ra mà bạn tính máy tính mới ko ra thôi
Giải:
\(\left(\dfrac{3}{2}\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}\right).\left(3\sqrt{\dfrac{2}{3}}-\sqrt{2}-\sqrt{6}\right).\left(-\sqrt{6}\right)\)
\(=\left(\sqrt{\dfrac{27}{2}}+\sqrt{\dfrac{8}{3}}-\sqrt{24}\right).\left(\sqrt{6}-\sqrt{2}-\sqrt{6}\right).\left(-\sqrt{6}\right)\)
\(=\left(\dfrac{\sqrt{6}}{6}\right).\left(-\sqrt{2}\right).\left(-\sqrt{6}\right)\)
\(=\sqrt{2}\)
Vậy ...
\(\sqrt{2+\sqrt{3}}\)\(\times\sqrt{2+\sqrt{2+\sqrt{3}}}\)\(\times\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\)\(\times\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
= \(\sqrt{2+\sqrt{3}}\)\(\times\sqrt{2+\sqrt{2+\sqrt{3}}}\)\(\times\sqrt{4-2-\sqrt{2+\sqrt{3}}}\)
= \(\sqrt{2+\sqrt{3}}\)\(\times\sqrt{2+\sqrt{2+\sqrt{3}}}\)\(\times\sqrt{2-\sqrt{2+\sqrt{3}}}\)
= \(\sqrt{2+\sqrt{3}}\)\(\times\sqrt{4-2-\sqrt{3}}\)
= \(\sqrt{2+\sqrt{3}}\)\(\times\sqrt{2-\sqrt{3}}\)
= \(\sqrt{4-3}\)
= 1