K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

\(S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{2^n}=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^n}\)

=>\(\frac{S}{2}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{n+1}}\)

=> \(\frac{S}{2}-S=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{n+1}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+..+\frac{1}{2^n}\right)\)

=> \(-\frac{S}{2}=\frac{1}{2^{n+1}}-1\)

=> S= \(2-\frac{1}{2^n}\)

8 tháng 7 2016

các bn ơi giải giúp mình đi mà

13 tháng 8 2018

Đặt A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512

2A = 1/2 x 2 + 1/4 x 2 + 1/8 x 2 + 1/16 x 2 + 1/32 x 2 + 1/64 x 2 + 1/128 x 2 + 1/256 x 2 + 1/512 x 2

2A = 1 + 1/2 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256

2A - A = ( 1 + 1/2 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 ) - ( 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512 )

A = 1 - 1/512

A = 511/512

19 tháng 1 2016

cách giải nhé các bạn

19 tháng 1 2016

cách giải đâu, bt cô giao mà

26 tháng 5 2018

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}+\frac{1}{64}-\frac{1}{128}\)

\(=1-\frac{1}{128}\)

\(\frac{127}{128}\)

26 tháng 5 2018

127/128

16 tháng 7 2015

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA, tui trước mà, HUHUHUHUHUHU..............................

 

28 tháng 3 2018

Ta có 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64

= ( 1/2 - 1/4 ) + ( 1/8 - 1/16 ) + ( 1/32 -  1/64)

= 1/4 + 1/16 + 1/64 

= 16 + 4 + 1 /64

= 21/64 < 21/63 = 1/3 

Vậy 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3 ( đpcm ) Chúc bn hok tốt  . k mik nha 

\(P=...\)

\(=\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+\frac{1}{97}-...-\frac{1}{2}+1\)

\(=\frac{1}{99}-1=\frac{-98}{99}\)

\(M=...\)

\(=\frac{2}{2}+\frac{1}{2}+\frac{4}{4}+\frac{1}{4}+...+\frac{64}{64}+\frac{1}{64}-7\)

\(=1+1+1+1+1+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}-7\)

\(=\frac{1+2+2^2+2^3+2^4+2^5}{2^6}-1\)

\(=\frac{2^6-1}{2^6}-1=1-\frac{1}{2^6}-1=-\frac{1}{2^6}\)